MemGPT/memgpt/data_types.py
Sarah Wooders 8c06cc4bf7
refactor!: Migrate users + agent information into storage connectors (#785)
Co-authored-by: cpacker <packercharles@gmail.com>
2024-01-08 15:59:49 -08:00

440 lines
14 KiB
Python

""" This module contains the data types used by MemGPT. Each data type must include a function to create a DB model. """
import uuid
from datetime import datetime
from abc import abstractmethod
from typing import Optional, List, Dict
import numpy as np
from memgpt.constants import DEFAULT_HUMAN, DEFAULT_MEMGPT_MODEL, DEFAULT_PERSONA, DEFAULT_PRESET, LLM_MAX_TOKENS
from memgpt.utils import get_local_time, format_datetime
# Defining schema objects:
# Note: user/agent can borrow from MemGPTConfig/AgentConfig classes
class Record:
"""
Base class for an agent's memory unit. Each memory unit is represented in the database as a single row.
Memory units are searched over by functions defined in the memory classes
"""
def __init__(self, id: Optional[str] = None):
if id is None:
self.id = uuid.uuid4()
else:
self.id = id
assert isinstance(self.id, uuid.UUID), f"UUID {self.id} must be a UUID type"
class ToolCall(object):
def __init__(
self,
id: str,
# TODO should we include this? it's fixed to 'function' only (for now) in OAI schema
tool_call_type: str, # only 'function' is supported
# function: { 'name': ..., 'arguments': ...}
function: Dict[str, str],
):
self.id = id
self.tool_call_type = tool_call_type
self.function = function
class Message(Record):
"""Representation of a message sent.
Messages can be:
- agent->user (role=='agent')
- user->agent and system->agent (role=='user')
- or function/tool call returns (role=='function'/'tool').
"""
def __init__(
self,
user_id: str,
agent_id: str,
role: str,
text: str,
model: str, # model used to make function call
name: Optional[str] = None, # optional participant name
created_at: Optional[str] = None,
tool_calls: Optional[List[ToolCall]] = None, # list of tool calls requested
tool_call_id: Optional[str] = None,
embedding: Optional[np.ndarray] = None,
id: Optional[str] = None,
):
super().__init__(id)
self.user_id = user_id
self.agent_id = agent_id
self.text = text
self.model = model # model name (e.g. gpt-4)
self.created_at = created_at
# openai info
self.role = role # role (agent/user/function)
self.name = name
# tool (i.e. function) call info (optional)
# if role == "assistant", this MAY be specified
# if role != "assistant", this must be null
self.tool_calls = tool_calls
# if role == "tool", then this must be specified
# if role != "tool", this must be null
self.tool_call_id = tool_call_id
# embedding (optional)
self.embedding = embedding
# def __repr__(self):
# pass
class Document(Record):
"""A document represent a document loaded into MemGPT, which is broken down into passages."""
def __init__(self, user_id: str, text: str, data_source: str, document_id: Optional[str] = None):
super().__init__(id)
self.user_id = user_id
self.text = text
self.document_id = document_id
self.data_source = data_source
# TODO: add optional embedding?
# def __repr__(self) -> str:
# pass
class Passage(Record):
"""A passage is a single unit of memory, and a standard format accross all storage backends.
It is a string of text with an assoidciated embedding.
"""
def __init__(
self,
user_id: str,
text: str,
agent_id: Optional[str] = None, # set if contained in agent memory
embedding: Optional[np.ndarray] = None,
data_source: Optional[str] = None, # None if created by agent
doc_id: Optional[str] = None,
id: Optional[str] = None,
metadata: Optional[dict] = {},
):
super().__init__(id)
self.user_id = user_id
self.agent_id = agent_id
self.text = text
self.data_source = data_source
self.embedding = embedding
self.doc_id = doc_id
self.metadata = metadata
# def __repr__(self):
# pass
class LLMConfig:
def __init__(
self,
model: Optional[str] = "gpt-4",
model_endpoint_type: Optional[str] = "openai",
model_endpoint: Optional[str] = "https://api.openai.com/v1",
model_wrapper: Optional[str] = None,
context_window: Optional[int] = None,
):
self.model = model
self.model_endpoint_type = model_endpoint_type
self.model_endpoint = model_endpoint
self.model_wrapper = model_wrapper
self.context_window = context_window
if context_window is None:
self.context_window = LLM_MAX_TOKENS[self.model] if self.model in LLM_MAX_TOKENS else LLM_MAX_TOKENS["DEFAULT"]
else:
self.context_window = context_window
class OpenAILLMConfig(LLMConfig):
def __init__(self, openai_key, **kwargs):
super().__init__(**kwargs)
self.openai_key = openai_key
class AzureLLMConfig(LLMConfig):
def __init__(
self,
azure_key: Optional[str] = None,
azure_endpoint: Optional[str] = None,
azure_version: Optional[str] = None,
azure_deployment: Optional[str] = None,
**kwargs,
):
super().__init__(**kwargs)
self.azure_key = azure_key
self.azure_endpoint = azure_endpoint
self.azure_version = azure_version
self.azure_deployment = azure_deployment
class EmbeddingConfig:
def __init__(
self,
embedding_endpoint_type: Optional[str] = "local",
embedding_endpoint: Optional[str] = None,
embedding_model: Optional[str] = None,
embedding_dim: Optional[int] = 384,
embedding_chunk_size: Optional[int] = 300,
# openai-only
openai_key: Optional[str] = None,
# azure-only
azure_key: Optional[str] = None,
azure_endpoint: Optional[str] = None,
azure_version: Optional[str] = None,
azure_deployment: Optional[str] = None,
):
self.embedding_endpoint_type = embedding_endpoint_type
self.embedding_endpoint = embedding_endpoint
self.embedding_model = embedding_model
self.embedding_dim = embedding_dim
self.embedding_chunk_size = embedding_chunk_size
# openai
self.openai_key = openai_key
# azure
self.azure_key = azure_key
self.azure_endpoint = azure_endpoint
self.azure_version = azure_version
self.azure_deployment = azure_deployment
class OpenAIEmbeddingConfig(EmbeddingConfig):
def __init__(self, openai_key: Optional[str] = None, **kwargs):
super().__init__(**kwargs)
self.openai_key = openai_key
class AzureEmbeddingConfig(EmbeddingConfig):
def __init__(
self,
azure_key: Optional[str] = None,
azure_endpoint: Optional[str] = None,
azure_version: Optional[str] = None,
azure_deployment: Optional[str] = None,
**kwargs,
):
super().__init__(**kwargs)
self.azure_key = azure_key
self.azure_endpoint = azure_endpoint
self.azure_version = azure_version
self.azure_deployment = azure_deployment
class User:
"""Defines user and default configurations"""
# TODO: make sure to encrypt/decrypt keys before storing in DB
def __init__(
self,
id: Optional[uuid.UUID] = None,
default_preset=DEFAULT_PRESET,
default_persona=DEFAULT_PERSONA,
default_human=DEFAULT_HUMAN,
default_agent=None,
default_llm_config: Optional[LLMConfig] = None, # defaults: llm model
default_embedding_config: Optional[EmbeddingConfig] = None, # defaults: embeddings
# azure information
azure_key=None,
azure_endpoint=None,
azure_version=None,
azure_deployment=None,
# openai information
openai_key=None,
# other
policies_accepted=False,
):
if id is None:
self.id = uuid.uuid4()
else:
self.id = id
self.default_preset = default_preset
self.default_persona = default_persona
self.default_human = default_human
self.default_agent = default_agent
# model defaults
self.default_llm_config = default_llm_config if default_llm_config is not None else LLMConfig()
self.default_embedding_config = default_embedding_config if default_embedding_config is not None else EmbeddingConfig()
# azure information
# TODO: split this up accross model config and embedding config?
self.azure_key = azure_key
self.azure_endpoint = azure_endpoint
self.azure_version = azure_version
self.azure_deployment = azure_deployment
# openai information
self.openai_key = openai_key
# set default embedding config
if default_embedding_config is None:
if self.openai_key:
self.default_embedding_config = OpenAIEmbeddingConfig(
openai_key=self.openai_key,
embedding_endpoint_type="openai",
embedding_endpoint="https://api.openai.com/v1",
embedding_dim=1536,
)
elif self.azure_key:
self.default_embedding_config = AzureEmbeddingConfig(
azure_key=self.azure_key,
azure_endpoint=self.azure_endpoint,
azure_version=self.azure_version,
azure_deployment=self.azure_deployment,
embedding_endpoint_type="azure",
embedding_endpoint="https://api.openai.com/v1",
embedding_dim=1536,
)
else:
# memgpt hosted
self.default_embedding_config = EmbeddingConfig(
embedding_endpoint_type="hugging-face",
embedding_endpoint="https://embeddings.memgpt.ai",
embedding_model="BAAI/bge-large-en-v1.5",
embedding_dim=1024,
embedding_chunk_size=300,
)
# set default LLM config
if default_llm_config is None:
if self.openai_key:
self.default_llm_config = OpenAILLMConfig(
openai_key=self.openai_key,
model="gpt-4",
model_endpoint_type="openai",
model_endpoint="https://api.openai.com/v1",
model_wrapper=None,
context_window=LLM_MAX_TOKENS["gpt-4"],
)
elif self.azure_key:
self.default_llm_config = AzureLLMConfig(
azure_key=self.azure_key,
azure_endpoint=self.azure_endpoint,
azure_version=self.azure_version,
azure_deployment=self.azure_deployment,
model="gpt-4",
model_endpoint_type="azure",
model_endpoint="https://api.openai.com/v1",
model_wrapper=None,
context_window=LLM_MAX_TOKENS["gpt-4"],
)
else:
# memgpt hosted
self.default_llm_config = LLMConfig(
model="ehartford/dolphin-2.5-mixtral-8x7b",
model_endpoint_type="vllm",
model_endpoint="https://api.memgpt.ai",
model_wrapper="chatml",
context_window=16384,
)
# misc
self.policies_accepted = policies_accepted
class AgentState:
def __init__(
self,
name: str,
user_id: str,
persona: str, # the filename where the persona was originally sourced from
human: str, # the filename where the human was originally sourced from
llm_config: LLMConfig,
embedding_config: EmbeddingConfig,
preset: str,
# (in-context) state contains:
# persona: str # the current persona text
# human: str # the current human text
# system: str, # system prompt (not required if initializing with a preset)
# functions: dict, # schema definitions ONLY (function code linked at runtime)
# messages: List[dict], # in-context messages
id: Optional[uuid.UUID] = None,
state: Optional[dict] = None,
created_at: Optional[str] = None,
):
if id is None:
self.id = uuid.uuid4()
else:
self.id = id
# TODO(swooders) we need to handle the case where name is None here
# in AgentConfig we autogenerate a name, not sure what the correct thing w/ DBs is, what about NounAdjective combos? Like giphy does? BoredGiraffe etc
self.name = name
self.user_id = user_id
self.preset = preset
self.persona = persona
self.human = human
self.llm_config = llm_config
self.embedding_config = embedding_config
self.created_at = created_at if created_at is not None else datetime.now()
# state
self.state = state
# def __eq__(self, other):
# if not isinstance(other, AgentState):
# # return False
# return NotImplemented
# return (
# self.name == other.name
# and self.user_id == other.user_id
# and self.persona == other.persona
# and self.human == other.human
# and vars(self.llm_config) == vars(other.llm_config)
# and vars(self.embedding_config) == vars(other.embedding_config)
# and self.preset == other.preset
# and self.state == other.state
# )
# def __dict__(self):
# return {
# "id": self.id,
# "name": self.name,
# "user_id": self.user_id,
# "preset": self.preset,
# "persona": self.persona,
# "human": self.human,
# "llm_config": self.llm_config,
# "embedding_config": self.embedding_config,
# "created_at": format_datetime(self.created_at),
# "state": self.state,
# }
class Source:
def __init__(
self,
user_id: str,
name: str,
created_at: Optional[str] = None,
id: Optional[uuid.UUID] = None,
):
if id is None:
self.id = uuid.uuid4()
else:
self.id = id
self.name = name
self.user_id = user_id
self.created_at = created_at