MemGPT/letta/functions/schema_generator.py
Matthew Zhou ac3197e32b
fix: Enable importing LangChain tools with arguments (#1807)
Co-authored-by: Matt Zhou <mattzhou@Matts-MacBook-Pro.local>
2024-09-30 18:47:48 -07:00

166 lines
6.3 KiB
Python

import inspect
from typing import Any, Dict, Optional, Type, Union, get_args, get_origin
from docstring_parser import parse
from pydantic import BaseModel
def is_optional(annotation):
# Check if the annotation is a Union
if getattr(annotation, "__origin__", None) is Union:
# Check if None is one of the options in the Union
return type(None) in annotation.__args__
return False
def optional_length(annotation):
if is_optional(annotation):
# Subtract 1 to account for NoneType
return len(annotation.__args__) - 1
else:
raise ValueError("The annotation is not an Optional type")
def type_to_json_schema_type(py_type):
"""
Maps a Python type to a JSON schema type.
Specifically handles typing.Optional and common Python types.
"""
# if get_origin(py_type) is typing.Optional:
if is_optional(py_type):
# Assert that Optional has only one type argument
type_args = get_args(py_type)
assert optional_length(py_type) == 1, f"Optional type must have exactly one type argument, but got {py_type}"
# Extract and map the inner type
return type_to_json_schema_type(type_args[0])
# Mapping of Python types to JSON schema types
type_map = {
int: "integer",
str: "string",
bool: "boolean",
float: "number",
list[str]: "array",
# Add more mappings as needed
}
if py_type not in type_map:
raise ValueError(f"Python type {py_type} has no corresponding JSON schema type")
return type_map.get(py_type, "string") # Default to "string" if type not in map
def pydantic_model_to_open_ai(model):
schema = model.model_json_schema()
docstring = parse(model.__doc__ or "")
parameters = {k: v for k, v in schema.items() if k not in ("title", "description")}
for param in docstring.params:
if (name := param.arg_name) in parameters["properties"] and (description := param.description):
if "description" not in parameters["properties"][name]:
parameters["properties"][name]["description"] = description
parameters["required"] = sorted(k for k, v in parameters["properties"].items() if "default" not in v)
if "description" not in schema:
if docstring.short_description:
schema["description"] = docstring.short_description
else:
raise
return {
"name": schema["title"],
"description": schema["description"],
"parameters": parameters,
}
def generate_schema(function, name: Optional[str] = None, description: Optional[str] = None):
# Get the signature of the function
sig = inspect.signature(function)
# Parse the docstring
docstring = parse(function.__doc__)
# Prepare the schema dictionary
schema = {
"name": function.__name__ if name is None else name,
"description": docstring.short_description if description is None else description,
"parameters": {"type": "object", "properties": {}, "required": []},
}
# TODO: ensure that 'agent' keyword is reserved for `Agent` class
for param in sig.parameters.values():
# Exclude 'self' parameter
if param.name == "self":
continue
# Assert that the parameter has a type annotation
if param.annotation == inspect.Parameter.empty:
raise TypeError(f"Parameter '{param.name}' in function '{function.__name__}' lacks a type annotation")
# Find the parameter's description in the docstring
param_doc = next((d for d in docstring.params if d.arg_name == param.name), None)
# Assert that the parameter has a description
if not param_doc or not param_doc.description:
raise ValueError(f"Parameter '{param.name}' in function '{function.__name__}' lacks a description in the docstring")
if inspect.isclass(param.annotation) and issubclass(param.annotation, BaseModel):
schema["parameters"]["properties"][param.name] = pydantic_model_to_open_ai(param.annotation)
else:
# Add parameter details to the schema
param_doc = next((d for d in docstring.params if d.arg_name == param.name), None)
schema["parameters"]["properties"][param.name] = {
# "type": "string" if param.annotation == str else str(param.annotation),
"type": type_to_json_schema_type(param.annotation) if param.annotation != inspect.Parameter.empty else "string",
"description": param_doc.description,
}
if param.default == inspect.Parameter.empty:
schema["parameters"]["required"].append(param.name)
if get_origin(param.annotation) is list:
if get_args(param.annotation)[0] is str:
schema["parameters"]["properties"][param.name]["items"] = {"type": "string"}
if param.annotation == inspect.Parameter.empty:
schema["parameters"]["required"].append(param.name)
# append the heartbeat
if function.__name__ not in ["send_message", "pause_heartbeats"]:
schema["parameters"]["properties"]["request_heartbeat"] = {
"type": "boolean",
"description": "Request an immediate heartbeat after function execution. Set to 'true' if you want to send a follow-up message or run a follow-up function.",
}
schema["parameters"]["required"].append("request_heartbeat")
return schema
def generate_schema_from_args_schema(
args_schema: Type[BaseModel], name: Optional[str] = None, description: Optional[str] = None
) -> Dict[str, Any]:
properties = {}
required = []
for field_name, field in args_schema.__fields__.items():
if field.type_.__name__ == "str":
field_type = "string"
elif field.type_.__name__ == "int":
field_type = "integer"
elif field.type_.__name__ == "bool":
field_type = "boolean"
else:
field_type = field.type_.__name__
properties[field_name] = {"type": field_type, "description": field.field_info.description}
if field.required:
required.append(field_name)
# Construct the OpenAI function call JSON object
function_call_json = {
"name": name,
"description": description,
"parameters": {"type": "object", "properties": properties, "required": required},
}
return function_call_json