mirror of
https://github.com/cpacker/MemGPT.git
synced 2025-06-03 04:30:22 +00:00
187 lines
6.3 KiB
Python
187 lines
6.3 KiB
Python
from autogen.agentchat import ConversableAgent, Agent
|
|
from ..agent import AgentAsync
|
|
|
|
# from .. import system
|
|
# from .. import constants
|
|
|
|
import asyncio
|
|
from typing import Callable, Optional, List, Dict, Union, Any, Tuple
|
|
|
|
|
|
from .interface import AutoGenInterface
|
|
from ..persistence_manager import InMemoryStateManager
|
|
from .. import system
|
|
from .. import constants
|
|
from .. import presets
|
|
from ..personas import personas
|
|
from ..humans import humans
|
|
|
|
|
|
def create_memgpt_autogen_agent_from_config(
|
|
name: str,
|
|
system_message: Optional[str] = "You are a helpful AI Assistant.",
|
|
is_termination_msg: Optional[Callable[[Dict], bool]] = None,
|
|
max_consecutive_auto_reply: Optional[int] = None,
|
|
human_input_mode: Optional[str] = "TERMINATE",
|
|
function_map: Optional[Dict[str, Callable]] = None,
|
|
code_execution_config: Optional[Union[Dict, bool]] = None,
|
|
llm_config: Optional[Union[Dict, bool]] = None,
|
|
default_auto_reply: Optional[Union[str, Dict, None]] = "",
|
|
):
|
|
"""
|
|
TODO support AutoGen config workflow in a clean way with constructors
|
|
"""
|
|
raise NotImplementedError
|
|
|
|
|
|
def create_autogen_memgpt_agent(
|
|
autogen_name,
|
|
preset=presets.DEFAULT,
|
|
model=constants.DEFAULT_MEMGPT_MODEL,
|
|
persona_description=personas.DEFAULT,
|
|
user_description=humans.DEFAULT,
|
|
interface=None,
|
|
interface_kwargs={},
|
|
persistence_manager=None,
|
|
persistence_manager_kwargs={},
|
|
):
|
|
interface = AutoGenInterface(**interface_kwargs) if interface is None else interface
|
|
persistence_manager = (
|
|
InMemoryStateManager(**persistence_manager_kwargs)
|
|
if persistence_manager is None
|
|
else persistence_manager
|
|
)
|
|
|
|
memgpt_agent = presets.use_preset(
|
|
preset,
|
|
model,
|
|
persona_description,
|
|
user_description,
|
|
interface,
|
|
persistence_manager,
|
|
)
|
|
|
|
autogen_memgpt_agent = MemGPTAgent(
|
|
name=autogen_name,
|
|
agent=memgpt_agent,
|
|
)
|
|
return autogen_memgpt_agent
|
|
|
|
|
|
class MemGPTAgent(ConversableAgent):
|
|
def __init__(
|
|
self,
|
|
name: str,
|
|
agent: AgentAsync,
|
|
skip_verify=False,
|
|
concat_other_agent_messages=False,
|
|
):
|
|
super().__init__(name)
|
|
self.agent = agent
|
|
self.skip_verify = skip_verify
|
|
self.concat_other_agent_messages = concat_other_agent_messages
|
|
self.register_reply(
|
|
[Agent, None], MemGPTAgent._a_generate_reply_for_user_message
|
|
)
|
|
self.register_reply([Agent, None], MemGPTAgent._generate_reply_for_user_message)
|
|
self.messages_processed_up_to_idx = 0
|
|
|
|
def format_other_agent_message(self, msg):
|
|
if "name" in msg:
|
|
user_message = f"{msg['name']}: {msg['content']}"
|
|
else:
|
|
user_message = msg["content"]
|
|
return user_message
|
|
|
|
def find_last_user_message(self):
|
|
last_user_message = None
|
|
for msg in self.agent.messages:
|
|
if msg["role"] == "user":
|
|
last_user_message = msg["content"]
|
|
return last_user_message
|
|
|
|
def find_new_messages(self, entire_message_list):
|
|
"""Extract the subset of messages that's actually new"""
|
|
return entire_message_list[self.messages_processed_up_to_idx :]
|
|
|
|
def _generate_reply_for_user_message(
|
|
self,
|
|
messages: Optional[List[Dict]] = None,
|
|
sender: Optional[Agent] = None,
|
|
config: Optional[Any] = None,
|
|
) -> Tuple[bool, Union[str, Dict, None]]:
|
|
return asyncio.run(
|
|
self._a_generate_reply_for_user_message(
|
|
messages=messages, sender=sender, config=config
|
|
)
|
|
)
|
|
|
|
async def _a_generate_reply_for_user_message(
|
|
self,
|
|
messages: Optional[List[Dict]] = None,
|
|
sender: Optional[Agent] = None,
|
|
config: Optional[Any] = None,
|
|
) -> Tuple[bool, Union[str, Dict, None]]:
|
|
# ret = []
|
|
# for the interface
|
|
# print(f"a_gen_reply messages:\n{messages}")
|
|
self.agent.interface.reset_message_list()
|
|
|
|
new_messages = self.find_new_messages(messages)
|
|
if len(new_messages) > 1:
|
|
if self.concat_other_agent_messages:
|
|
# Combine all the other messages into one message
|
|
user_message = "\n".join(
|
|
[self.format_other_agent_message(m) for m in new_messages]
|
|
)
|
|
else:
|
|
# Extend the MemGPT message list with multiple 'user' messages, then push the last one with agent.step()
|
|
self.agent.messages.extend(new_messages[:-1])
|
|
user_message = new_messages[-1]
|
|
else:
|
|
user_message = new_messages[0]
|
|
|
|
# Package the user message
|
|
user_message = system.package_user_message(user_message)
|
|
|
|
# Send a single message into MemGPT
|
|
while True:
|
|
(
|
|
new_messages,
|
|
heartbeat_request,
|
|
function_failed,
|
|
token_warning,
|
|
) = await self.agent.step(
|
|
user_message, first_message=False, skip_verify=self.skip_verify
|
|
)
|
|
# ret.extend(new_messages)
|
|
# Skip user inputs if there's a memory warning, function execution failed, or the agent asked for control
|
|
if token_warning:
|
|
user_message = system.get_token_limit_warning()
|
|
elif function_failed:
|
|
user_message = system.get_heartbeat(
|
|
constants.FUNC_FAILED_HEARTBEAT_MESSAGE
|
|
)
|
|
elif heartbeat_request:
|
|
user_message = system.get_heartbeat(constants.REQ_HEARTBEAT_MESSAGE)
|
|
else:
|
|
break
|
|
|
|
# Pass back to AutoGen the pretty-printed calls MemGPT made to the interface
|
|
pretty_ret = MemGPTAgent.pretty_concat(self.agent.interface.message_list)
|
|
self.messages_processed_up_to_idx += len(new_messages)
|
|
return True, pretty_ret
|
|
|
|
@staticmethod
|
|
def pretty_concat(messages):
|
|
"""AutoGen expects a single response, but MemGPT may take many steps.
|
|
|
|
To accommodate AutoGen, concatenate all of MemGPT's steps into one and return as a single message.
|
|
"""
|
|
ret = {"role": "assistant", "content": ""}
|
|
lines = []
|
|
for m in messages:
|
|
lines.append(f"{m}")
|
|
ret["content"] = "\n".join(lines)
|
|
return ret
|