mirror of
https://github.com/cpacker/MemGPT.git
synced 2025-06-03 04:30:22 +00:00

Co-authored-by: Shubham Naik <shubham.naik10@gmail.com> Co-authored-by: Matthew Zhou <mattzh1314@gmail.com> Co-authored-by: Matt Zhou <mattzhou@Matts-MacBook-Pro.local> Co-authored-by: Shubham Naik <shub@memgpt.ai>
76 lines
2.6 KiB
Python
76 lines
2.6 KiB
Python
import uuid
|
|
|
|
from letta import create_client
|
|
from letta.schemas.embedding_config import EmbeddingConfig
|
|
from letta.schemas.llm_config import LLMConfig
|
|
|
|
from .utils import wipe_config
|
|
|
|
# test_agent_id = "test_agent"
|
|
test_agent_name = f"test_client_{str(uuid.uuid4())}"
|
|
client = None
|
|
agent_obj = None
|
|
|
|
# TODO: these tests should include looping through LLM providers, since behavior may vary across providers
|
|
# TODO: these tests should add function calls into the summarized message sequence:W
|
|
|
|
|
|
def create_test_agent():
|
|
"""Create a test agent that we can call functions on"""
|
|
wipe_config()
|
|
|
|
global client
|
|
client = create_client()
|
|
|
|
client.set_default_llm_config(LLMConfig.default_config("gpt-4"))
|
|
client.set_default_embedding_config(EmbeddingConfig.default_config(provider="openai"))
|
|
|
|
agent_state = client.create_agent(
|
|
name=test_agent_name,
|
|
)
|
|
|
|
global agent_obj
|
|
agent_obj = client.server._get_or_load_agent(agent_id=agent_state.id)
|
|
|
|
|
|
def test_summarize():
|
|
"""Test summarization via sending the summarize CLI command or via a direct call to the agent object"""
|
|
global client
|
|
global agent_obj
|
|
|
|
if agent_obj is None:
|
|
create_test_agent()
|
|
|
|
assert agent_obj is not None, "Run create_agent test first"
|
|
assert client is not None, "Run create_agent test first"
|
|
|
|
# First send a few messages (5)
|
|
response = client.user_message(
|
|
agent_id=agent_obj.agent_state.id,
|
|
message="Hey, how's it going? What do you think about this whole shindig",
|
|
).messages
|
|
assert response is not None and len(response) > 0
|
|
print(f"test_summarize: response={response}")
|
|
|
|
response = client.user_message(
|
|
agent_id=agent_obj.agent_state.id,
|
|
message="Any thoughts on the meaning of life?",
|
|
).messages
|
|
assert response is not None and len(response) > 0
|
|
print(f"test_summarize: response={response}")
|
|
|
|
response = client.user_message(agent_id=agent_obj.agent_state.id, message="Does the number 42 ring a bell?").messages
|
|
assert response is not None and len(response) > 0
|
|
print(f"test_summarize: response={response}")
|
|
|
|
response = client.user_message(
|
|
agent_id=agent_obj.agent_state.id,
|
|
message="Would you be surprised to learn that you're actually conversing with an AI right now?",
|
|
).messages
|
|
assert response is not None and len(response) > 0
|
|
print(f"test_summarize: response={response}")
|
|
|
|
agent_obj.summarize_messages_inplace()
|
|
print(f"Summarization succeeded: messages[1] = \n{agent_obj.messages[1]}")
|
|
# response = client.run_command(agent_id=agent_obj.agent_state.id, command="summarize")
|