mirror of
https://github.com/cpacker/MemGPT.git
synced 2025-06-03 04:30:22 +00:00
737 lines
35 KiB
Python
737 lines
35 KiB
Python
import datetime
|
|
import glob
|
|
import os
|
|
import json
|
|
import traceback
|
|
|
|
from memgpt.persistence_manager import LocalStateManager
|
|
from memgpt.config import AgentConfig, MemGPTConfig
|
|
from memgpt.system import get_login_event, package_function_response, package_summarize_message, get_initial_boot_messages
|
|
from memgpt.memory import CoreMemory as InContextMemory, summarize_messages
|
|
from memgpt.openai_tools import create, is_context_overflow_error
|
|
from memgpt.utils import get_local_time, parse_json, united_diff, printd, count_tokens, get_schema_diff, validate_function_response
|
|
from memgpt.constants import (
|
|
FIRST_MESSAGE_ATTEMPTS,
|
|
MESSAGE_SUMMARY_WARNING_FRAC,
|
|
MESSAGE_SUMMARY_TRUNC_TOKEN_FRAC,
|
|
MESSAGE_SUMMARY_TRUNC_KEEP_N_LAST,
|
|
CORE_MEMORY_HUMAN_CHAR_LIMIT,
|
|
CORE_MEMORY_PERSONA_CHAR_LIMIT,
|
|
LLM_MAX_TOKENS,
|
|
CLI_WARNING_PREFIX,
|
|
)
|
|
from .errors import LLMError
|
|
from .functions.functions import load_all_function_sets
|
|
|
|
|
|
def initialize_memory(ai_notes, human_notes):
|
|
if ai_notes is None:
|
|
raise ValueError(ai_notes)
|
|
if human_notes is None:
|
|
raise ValueError(human_notes)
|
|
memory = InContextMemory(human_char_limit=CORE_MEMORY_HUMAN_CHAR_LIMIT, persona_char_limit=CORE_MEMORY_PERSONA_CHAR_LIMIT)
|
|
memory.edit_persona(ai_notes)
|
|
memory.edit_human(human_notes)
|
|
return memory
|
|
|
|
|
|
def construct_system_with_memory(system, memory, memory_edit_timestamp, archival_memory=None, recall_memory=None, include_char_count=True):
|
|
full_system_message = "\n".join(
|
|
[
|
|
system,
|
|
"\n",
|
|
f"### Memory [last modified: {memory_edit_timestamp.strip()}]",
|
|
f"{len(recall_memory) if recall_memory else 0} previous messages between you and the user are stored in recall memory (use functions to access them)",
|
|
f"{len(archival_memory) if archival_memory else 0} total memories you created are stored in archival memory (use functions to access them)",
|
|
"\nCore memory shown below (limited in size, additional information stored in archival / recall memory):",
|
|
f'<persona characters="{len(memory.persona)}/{memory.persona_char_limit}">' if include_char_count else "<persona>",
|
|
memory.persona,
|
|
"</persona>",
|
|
f'<human characters="{len(memory.human)}/{memory.human_char_limit}">' if include_char_count else "<human>",
|
|
memory.human,
|
|
"</human>",
|
|
]
|
|
)
|
|
return full_system_message
|
|
|
|
|
|
def initialize_message_sequence(
|
|
model,
|
|
system,
|
|
memory,
|
|
archival_memory=None,
|
|
recall_memory=None,
|
|
memory_edit_timestamp=None,
|
|
include_initial_boot_message=True,
|
|
):
|
|
if memory_edit_timestamp is None:
|
|
memory_edit_timestamp = get_local_time()
|
|
|
|
full_system_message = construct_system_with_memory(
|
|
system, memory, memory_edit_timestamp, archival_memory=archival_memory, recall_memory=recall_memory
|
|
)
|
|
first_user_message = get_login_event() # event letting MemGPT know the user just logged in
|
|
|
|
if include_initial_boot_message:
|
|
if model is not None and "gpt-3.5" in model:
|
|
initial_boot_messages = get_initial_boot_messages("startup_with_send_message_gpt35")
|
|
else:
|
|
initial_boot_messages = get_initial_boot_messages("startup_with_send_message")
|
|
messages = (
|
|
[
|
|
{"role": "system", "content": full_system_message},
|
|
]
|
|
+ initial_boot_messages
|
|
+ [
|
|
{"role": "user", "content": first_user_message},
|
|
]
|
|
)
|
|
|
|
else:
|
|
messages = [
|
|
{"role": "system", "content": full_system_message},
|
|
{"role": "user", "content": first_user_message},
|
|
]
|
|
|
|
return messages
|
|
|
|
|
|
class Agent(object):
|
|
def __init__(
|
|
self,
|
|
config,
|
|
model,
|
|
system,
|
|
functions, # list of [{'schema': 'x', 'python_function': function_pointer}, ...]
|
|
interface,
|
|
persistence_manager,
|
|
persona_notes,
|
|
human_notes,
|
|
messages_total=None,
|
|
persistence_manager_init=True,
|
|
first_message_verify_mono=True,
|
|
):
|
|
# agent config
|
|
self.config = config
|
|
|
|
# gpt-4, gpt-3.5-turbo
|
|
self.model = model
|
|
# Store the system instructions (used to rebuild memory)
|
|
self.system = system
|
|
|
|
# Available functions is a mapping from:
|
|
# function_name -> {
|
|
# json_schema: schema
|
|
# python_function: function
|
|
# }
|
|
# Store the functions schemas (this is passed as an argument to ChatCompletion)
|
|
functions_schema = [f_dict["json_schema"] for f_name, f_dict in functions.items()]
|
|
self.functions = functions_schema
|
|
# Store references to the python objects
|
|
self.functions_python = {f_name: f_dict["python_function"] for f_name, f_dict in functions.items()}
|
|
|
|
# Initialize the memory object
|
|
self.memory = initialize_memory(persona_notes, human_notes)
|
|
# Once the memory object is initialize, use it to "bake" the system message
|
|
self._messages = initialize_message_sequence(
|
|
self.model,
|
|
self.system,
|
|
self.memory,
|
|
)
|
|
# Keep track of the total number of messages throughout all time
|
|
self.messages_total = messages_total if messages_total is not None else (len(self._messages) - 1) # (-system)
|
|
# self.messages_total_init = self.messages_total
|
|
self.messages_total_init = len(self._messages) - 1
|
|
printd(f"Agent initialized, self.messages_total={self.messages_total}")
|
|
|
|
# Interface must implement:
|
|
# - internal_monologue
|
|
# - assistant_message
|
|
# - function_message
|
|
# ...
|
|
# Different interfaces can handle events differently
|
|
# e.g., print in CLI vs send a discord message with a discord bot
|
|
self.interface = interface
|
|
|
|
# Persistence manager must implement:
|
|
# - set_messages
|
|
# - get_messages
|
|
# - append_to_messages
|
|
self.persistence_manager = persistence_manager
|
|
if persistence_manager_init:
|
|
# creates a new agent object in the database
|
|
self.persistence_manager.init(self)
|
|
|
|
# State needed for heartbeat pausing
|
|
self.pause_heartbeats_start = None
|
|
self.pause_heartbeats_minutes = 0
|
|
|
|
self.first_message_verify_mono = first_message_verify_mono
|
|
|
|
# Controls if the convo memory pressure warning is triggered
|
|
# When an alert is sent in the message queue, set this to True (to avoid repeat alerts)
|
|
# When the summarizer is run, set this back to False (to reset)
|
|
self.agent_alerted_about_memory_pressure = False
|
|
|
|
@property
|
|
def messages(self):
|
|
return self._messages
|
|
|
|
@messages.setter
|
|
def messages(self, value):
|
|
raise Exception("Modifying message list directly not allowed")
|
|
|
|
def trim_messages(self, num):
|
|
"""Trim messages from the front, not including the system message"""
|
|
self.persistence_manager.trim_messages(num)
|
|
|
|
new_messages = [self.messages[0]] + self.messages[num:]
|
|
self._messages = new_messages
|
|
|
|
def prepend_to_messages(self, added_messages):
|
|
"""Wrapper around self.messages.prepend to allow additional calls to a state/persistence manager"""
|
|
self.persistence_manager.prepend_to_messages(added_messages)
|
|
|
|
new_messages = [self.messages[0]] + added_messages + self.messages[1:] # prepend (no system)
|
|
self._messages = new_messages
|
|
self.messages_total += len(added_messages) # still should increment the message counter (summaries are additions too)
|
|
|
|
def append_to_messages(self, added_messages):
|
|
"""Wrapper around self.messages.append to allow additional calls to a state/persistence manager"""
|
|
self.persistence_manager.append_to_messages(added_messages)
|
|
|
|
# strip extra metadata if it exists
|
|
for msg in added_messages:
|
|
msg.pop("api_response", None)
|
|
msg.pop("api_args", None)
|
|
new_messages = self.messages + added_messages # append
|
|
|
|
self._messages = new_messages
|
|
self.messages_total += len(added_messages)
|
|
|
|
def swap_system_message(self, new_system_message):
|
|
assert new_system_message["role"] == "system", new_system_message
|
|
assert self.messages[0]["role"] == "system", self.messages
|
|
|
|
self.persistence_manager.swap_system_message(new_system_message)
|
|
|
|
new_messages = [new_system_message] + self.messages[1:] # swap index 0 (system)
|
|
self._messages = new_messages
|
|
|
|
def rebuild_memory(self):
|
|
"""Rebuilds the system message with the latest memory object"""
|
|
curr_system_message = self.messages[0] # this is the system + memory bank, not just the system prompt
|
|
new_system_message = initialize_message_sequence(
|
|
self.model,
|
|
self.system,
|
|
self.memory,
|
|
archival_memory=self.persistence_manager.archival_memory,
|
|
recall_memory=self.persistence_manager.recall_memory,
|
|
)[0]
|
|
|
|
diff = united_diff(curr_system_message["content"], new_system_message["content"])
|
|
printd(f"Rebuilding system with new memory...\nDiff:\n{diff}")
|
|
|
|
# Store the memory change (if stateful)
|
|
self.persistence_manager.update_memory(self.memory)
|
|
|
|
# Swap the system message out
|
|
self.swap_system_message(new_system_message)
|
|
|
|
### Local state management
|
|
def to_dict(self):
|
|
# TODO: select specific variables for the saves state (to eventually move to a DB) rather than checkpointing everything in the class
|
|
return {
|
|
"model": self.model,
|
|
"system": self.system,
|
|
"functions": self.functions,
|
|
"messages": self.messages,
|
|
"messages_total": self.messages_total,
|
|
"memory": self.memory.to_dict(),
|
|
}
|
|
|
|
def save_agent_state_json(self, filename):
|
|
"""Save agent state to JSON"""
|
|
with open(filename, "w") as file:
|
|
json.dump(self.to_dict(), file)
|
|
|
|
def save(self):
|
|
"""Save agent state locally"""
|
|
|
|
# save config
|
|
self.config.save()
|
|
|
|
# save agent state to timestamped file
|
|
timestamp = get_local_time().replace(" ", "_").replace(":", "_")
|
|
filename = f"{timestamp}.json"
|
|
os.makedirs(self.config.save_state_dir(), exist_ok=True)
|
|
self.save_agent_state_json(os.path.join(self.config.save_state_dir(), filename))
|
|
|
|
# save the persistence manager too (recall/archival memory)
|
|
self.persistence_manager.save()
|
|
|
|
@classmethod
|
|
def load_agent(cls, interface, agent_config: AgentConfig):
|
|
"""Load saved agent state based on agent_config"""
|
|
# TODO: support loading from specific file
|
|
agent_name = agent_config.name
|
|
|
|
# load state
|
|
directory = agent_config.save_state_dir()
|
|
json_files = glob.glob(os.path.join(directory, "*.json")) # This will list all .json files in the current directory.
|
|
if not json_files:
|
|
print(f"/load error: no .json checkpoint files found")
|
|
raise ValueError(f"Cannot load {agent_name} - no saved checkpoints found in {directory}")
|
|
|
|
# Sort files based on modified timestamp, with the latest file being the first.
|
|
filename = max(json_files, key=os.path.getmtime)
|
|
state = json.load(open(filename, "r"))
|
|
|
|
# load persistence manager
|
|
persistence_manager = LocalStateManager.load(agent_config)
|
|
|
|
# need to dynamically link the functions
|
|
# the saved agent.functions will just have the schemas, but we need to
|
|
# go through the functions library and pull the respective python functions
|
|
|
|
# Available functions is a mapping from:
|
|
# function_name -> {
|
|
# json_schema: schema
|
|
# python_function: function
|
|
# }
|
|
# agent.functions is a list of schemas (OpenAI kwarg functions style, see: https://platform.openai.com/docs/api-reference/chat/create)
|
|
# [{'name': ..., 'description': ...}, {...}]
|
|
available_functions = load_all_function_sets()
|
|
linked_function_set = {}
|
|
for f_schema in state["functions"]:
|
|
# Attempt to find the function in the existing function library
|
|
f_name = f_schema.get("name")
|
|
if f_name is None:
|
|
raise ValueError(f"While loading agent.state.functions encountered a bad function schema object with no name:\n{f_schema}")
|
|
linked_function = available_functions.get(f_name)
|
|
if linked_function is None:
|
|
raise ValueError(
|
|
f"Function '{f_name}' was specified in agent.state.functions, but is not in function library:\n{available_functions.keys()}"
|
|
)
|
|
# Once we find a matching function, make sure the schema is identical
|
|
if json.dumps(f_schema) != json.dumps(linked_function["json_schema"]):
|
|
# error_message = (
|
|
# f"Found matching function '{f_name}' from agent.state.functions inside function library, but schemas are different."
|
|
# + f"\n>>>agent.state.functions\n{json.dumps(f_schema, indent=2)}"
|
|
# + f"\n>>>function library\n{json.dumps(linked_function['json_schema'], indent=2)}"
|
|
# )
|
|
schema_diff = get_schema_diff(f_schema, linked_function["json_schema"])
|
|
error_message = (
|
|
f"Found matching function '{f_name}' from agent.state.functions inside function library, but schemas are different.\n"
|
|
+ "".join(schema_diff)
|
|
)
|
|
|
|
# NOTE to handle old configs, instead of erroring here let's just warn
|
|
# raise ValueError(error_message)
|
|
printd(error_message)
|
|
linked_function_set[f_name] = linked_function
|
|
|
|
messages = state["messages"]
|
|
agent = cls(
|
|
config=agent_config,
|
|
model=state["model"],
|
|
system=state["system"],
|
|
# functions=state["functions"],
|
|
functions=linked_function_set,
|
|
interface=interface,
|
|
persistence_manager=persistence_manager,
|
|
persistence_manager_init=False,
|
|
persona_notes=state["memory"]["persona"],
|
|
human_notes=state["memory"]["human"],
|
|
messages_total=state["messages_total"] if "messages_total" in state else len(messages) - 1,
|
|
)
|
|
agent._messages = messages
|
|
agent.memory = initialize_memory(state["memory"]["persona"], state["memory"]["human"])
|
|
return agent
|
|
|
|
def verify_first_message_correctness(self, response, require_send_message=True, require_monologue=False):
|
|
"""Can be used to enforce that the first message always uses send_message"""
|
|
response_message = response.choices[0].message
|
|
|
|
# First message should be a call to send_message with a non-empty content
|
|
if require_send_message and not response_message.get("function_call"):
|
|
printd(f"First message didn't include function call: {response_message}")
|
|
return False
|
|
|
|
function_call = response_message.get("function_call")
|
|
function_name = function_call.get("name") if function_call is not None else ""
|
|
if require_send_message and function_name != "send_message" and function_name != "archival_memory_search":
|
|
printd(f"First message function call wasn't send_message or archival_memory_search: {response_message}")
|
|
return False
|
|
|
|
if require_monologue and (
|
|
not response_message.get("content") or response_message["content"] is None or response_message["content"] == ""
|
|
):
|
|
printd(f"First message missing internal monologue: {response_message}")
|
|
return False
|
|
|
|
if response_message.get("content"):
|
|
### Extras
|
|
monologue = response_message.get("content")
|
|
|
|
def contains_special_characters(s):
|
|
special_characters = '(){}[]"'
|
|
return any(char in s for char in special_characters)
|
|
|
|
if contains_special_characters(monologue):
|
|
printd(f"First message internal monologue contained special characters: {response_message}")
|
|
return False
|
|
# if 'functions' in monologue or 'send_message' in monologue or 'inner thought' in monologue.lower():
|
|
if "functions" in monologue or "send_message" in monologue:
|
|
# Sometimes the syntax won't be correct and internal syntax will leak into message.context
|
|
printd(f"First message internal monologue contained reserved words: {response_message}")
|
|
return False
|
|
|
|
return True
|
|
|
|
def handle_ai_response(self, response_message):
|
|
"""Handles parsing and function execution"""
|
|
messages = [] # append these to the history when done
|
|
|
|
# Step 2: check if LLM wanted to call a function
|
|
if response_message.get("function_call"):
|
|
# The content if then internal monologue, not chat
|
|
self.interface.internal_monologue(response_message.content)
|
|
messages.append(response_message) # extend conversation with assistant's reply
|
|
|
|
# Step 3: call the function
|
|
# Note: the JSON response may not always be valid; be sure to handle errors
|
|
|
|
# Failure case 1: function name is wrong
|
|
function_name = response_message["function_call"]["name"]
|
|
try:
|
|
function_to_call = self.functions_python[function_name]
|
|
except KeyError as e:
|
|
error_msg = f"No function named {function_name}"
|
|
function_response = package_function_response(False, error_msg)
|
|
messages.append(
|
|
{
|
|
"role": "function",
|
|
"name": function_name,
|
|
"content": function_response,
|
|
}
|
|
) # extend conversation with function response
|
|
self.interface.function_message(f"Error: {error_msg}")
|
|
return messages, None, True # force a heartbeat to allow agent to handle error
|
|
|
|
# Failure case 2: function name is OK, but function args are bad JSON
|
|
try:
|
|
raw_function_args = response_message["function_call"]["arguments"]
|
|
function_args = parse_json(raw_function_args)
|
|
except Exception as e:
|
|
error_msg = f"Error parsing JSON for function '{function_name}' arguments: {raw_function_args}"
|
|
function_response = package_function_response(False, error_msg)
|
|
messages.append(
|
|
{
|
|
"role": "function",
|
|
"name": function_name,
|
|
"content": function_response,
|
|
}
|
|
) # extend conversation with function response
|
|
self.interface.function_message(f"Error: {error_msg}")
|
|
return messages, None, True # force a heartbeat to allow agent to handle error
|
|
|
|
# (Still parsing function args)
|
|
# Handle requests for immediate heartbeat
|
|
heartbeat_request = function_args.pop("request_heartbeat", None)
|
|
if not (isinstance(heartbeat_request, bool) or heartbeat_request is None):
|
|
printd(
|
|
f"{CLI_WARNING_PREFIX}'request_heartbeat' arg parsed was not a bool or None, type={type(heartbeat_request)}, value={heartbeat_request}"
|
|
)
|
|
heartbeat_request = None
|
|
|
|
# Failure case 3: function failed during execution
|
|
self.interface.function_message(f"Running {function_name}({function_args})")
|
|
try:
|
|
function_args["self"] = self # need to attach self to arg since it's dynamically linked
|
|
function_response = function_to_call(**function_args)
|
|
function_response_string = validate_function_response(function_response)
|
|
function_args.pop("self", None)
|
|
function_response = package_function_response(True, function_response_string)
|
|
function_failed = False
|
|
except Exception as e:
|
|
function_args.pop("self", None)
|
|
# error_msg = f"Error calling function {function_name} with args {function_args}: {str(e)}"
|
|
# Less detailed - don't provide full args, idea is that it should be in recent context so no need (just adds noise)
|
|
error_msg = f"Error calling function {function_name}: {str(e)}"
|
|
error_msg_user = f"{error_msg}\n{traceback.format_exc()}"
|
|
printd(error_msg_user)
|
|
function_response = package_function_response(False, error_msg)
|
|
messages.append(
|
|
{
|
|
"role": "function",
|
|
"name": function_name,
|
|
"content": function_response,
|
|
}
|
|
) # extend conversation with function response
|
|
self.interface.function_message(f"Error: {error_msg}")
|
|
return messages, None, True # force a heartbeat to allow agent to handle error
|
|
|
|
# If no failures happened along the way: ...
|
|
# Step 4: send the info on the function call and function response to GPT
|
|
self.interface.function_message(f"Success: {function_response_string}")
|
|
messages.append(
|
|
{
|
|
"role": "function",
|
|
"name": function_name,
|
|
"content": function_response,
|
|
}
|
|
) # extend conversation with function response
|
|
|
|
else:
|
|
# Standard non-function reply
|
|
self.interface.internal_monologue(response_message.content)
|
|
messages.append(response_message) # extend conversation with assistant's reply
|
|
heartbeat_request = None
|
|
function_failed = None
|
|
|
|
return messages, heartbeat_request, function_failed
|
|
|
|
def step(self, user_message, first_message=False, first_message_retry_limit=FIRST_MESSAGE_ATTEMPTS, skip_verify=False):
|
|
"""Top-level event message handler for the MemGPT agent"""
|
|
|
|
try:
|
|
# Step 0: add user message
|
|
if user_message is not None:
|
|
self.interface.user_message(user_message)
|
|
packed_user_message = {"role": "user", "content": user_message}
|
|
# Special handling for AutoGen messages with 'name' field
|
|
try:
|
|
user_message_json = json.loads(user_message)
|
|
# Treat 'name' as a special field
|
|
# If it exists in the input message, elevate it to the 'message' level
|
|
if "name" in user_message_json:
|
|
packed_user_message["name"] = user_message_json["name"]
|
|
user_message_json.pop("name", None)
|
|
packed_user_message["content"] = json.dumps(user_message_json)
|
|
except Exception as e:
|
|
print(f"{CLI_WARNING_PREFIX}handling of 'name' field failed with: {e}")
|
|
input_message_sequence = self.messages + [packed_user_message]
|
|
else:
|
|
input_message_sequence = self.messages
|
|
|
|
if len(input_message_sequence) > 1 and input_message_sequence[-1]["role"] != "user":
|
|
printd(f"{CLI_WARNING_PREFIX}Attempting to run ChatCompletion without user as the last message in the queue")
|
|
|
|
# Step 1: send the conversation and available functions to GPT
|
|
if not skip_verify and (first_message or self.messages_total == self.messages_total_init):
|
|
printd(f"This is the first message. Running extra verifier on AI response.")
|
|
counter = 0
|
|
while True:
|
|
response = self.get_ai_reply(
|
|
message_sequence=input_message_sequence,
|
|
first_message=True, # passed through to the prompt formatter
|
|
)
|
|
if self.verify_first_message_correctness(response, require_monologue=self.first_message_verify_mono):
|
|
break
|
|
|
|
counter += 1
|
|
if counter > first_message_retry_limit:
|
|
raise Exception(f"Hit first message retry limit ({first_message_retry_limit})")
|
|
|
|
else:
|
|
response = self.get_ai_reply(
|
|
message_sequence=input_message_sequence,
|
|
)
|
|
|
|
# Step 2: check if LLM wanted to call a function
|
|
# (if yes) Step 3: call the function
|
|
# (if yes) Step 4: send the info on the function call and function response to LLM
|
|
response_message = response.choices[0].message
|
|
response_message_copy = response_message.copy()
|
|
all_response_messages, heartbeat_request, function_failed = self.handle_ai_response(response_message)
|
|
|
|
# Add the extra metadata to the assistant response
|
|
# (e.g. enough metadata to enable recreating the API call)
|
|
assert "api_response" not in all_response_messages[0]
|
|
all_response_messages[0]["api_response"] = response_message_copy
|
|
assert "api_args" not in all_response_messages[0]
|
|
all_response_messages[0]["api_args"] = {
|
|
"model": self.model,
|
|
"messages": input_message_sequence,
|
|
"functions": self.functions,
|
|
}
|
|
|
|
# Step 4: extend the message history
|
|
if user_message is not None:
|
|
all_new_messages = [packed_user_message] + all_response_messages
|
|
else:
|
|
all_new_messages = all_response_messages
|
|
|
|
# Check the memory pressure and potentially issue a memory pressure warning
|
|
current_total_tokens = response["usage"]["total_tokens"]
|
|
active_memory_warning = False
|
|
# We can't do summarize logic properly if context_window is undefined
|
|
if self.config.context_window is None:
|
|
# Fallback if for some reason context_window is missing, just set to the default
|
|
print(f"{CLI_WARNING_PREFIX}could not find context_window in config, setting to default {LLM_MAX_TOKENS['DEFAULT']}")
|
|
print(f"{self.config}")
|
|
self.config.context_window = (
|
|
str(LLM_MAX_TOKENS[self.model])
|
|
if (self.model is not None and self.model in LLM_MAX_TOKENS)
|
|
else str(LLM_MAX_TOKENS["DEFAULT"])
|
|
)
|
|
if current_total_tokens > MESSAGE_SUMMARY_WARNING_FRAC * int(self.config.context_window):
|
|
printd(
|
|
f"{CLI_WARNING_PREFIX}last response total_tokens ({current_total_tokens}) > {MESSAGE_SUMMARY_WARNING_FRAC * int(self.config.context_window)}"
|
|
)
|
|
# Only deliver the alert if we haven't already (this period)
|
|
if not self.agent_alerted_about_memory_pressure:
|
|
active_memory_warning = True
|
|
self.agent_alerted_about_memory_pressure = True # it's up to the outer loop to handle this
|
|
else:
|
|
printd(
|
|
f"last response total_tokens ({current_total_tokens}) < {MESSAGE_SUMMARY_WARNING_FRAC * int(self.config.context_window)}"
|
|
)
|
|
|
|
self.append_to_messages(all_new_messages)
|
|
return all_new_messages, heartbeat_request, function_failed, active_memory_warning
|
|
|
|
except Exception as e:
|
|
printd(f"step() failed\nuser_message = {user_message}\nerror = {e}")
|
|
|
|
# If we got a context alert, try trimming the messages length, then try again
|
|
if is_context_overflow_error(e):
|
|
# A separate API call to run a summarizer
|
|
self.summarize_messages_inplace()
|
|
|
|
# Try step again
|
|
return self.step(user_message, first_message=first_message)
|
|
else:
|
|
printd(f"step() failed with an unrecognized exception: '{str(e)}'")
|
|
raise e
|
|
|
|
def summarize_messages_inplace(self, cutoff=None, preserve_last_N_messages=True):
|
|
assert self.messages[0]["role"] == "system", f"self.messages[0] should be system (instead got {self.messages[0]})"
|
|
|
|
# Start at index 1 (past the system message),
|
|
# and collect messages for summarization until we reach the desired truncation token fraction (eg 50%)
|
|
# Do not allow truncation of the last N messages, since these are needed for in-context examples of function calling
|
|
token_counts = [count_tokens(str(msg)) for msg in self.messages]
|
|
message_buffer_token_count = sum(token_counts[1:]) # no system message
|
|
desired_token_count_to_summarize = int(message_buffer_token_count * MESSAGE_SUMMARY_TRUNC_TOKEN_FRAC)
|
|
candidate_messages_to_summarize = self.messages[1:]
|
|
token_counts = token_counts[1:]
|
|
if preserve_last_N_messages:
|
|
candidate_messages_to_summarize = candidate_messages_to_summarize[:-MESSAGE_SUMMARY_TRUNC_KEEP_N_LAST]
|
|
token_counts = token_counts[:-MESSAGE_SUMMARY_TRUNC_KEEP_N_LAST]
|
|
printd(f"MESSAGE_SUMMARY_TRUNC_TOKEN_FRAC={MESSAGE_SUMMARY_TRUNC_TOKEN_FRAC}")
|
|
printd(f"MESSAGE_SUMMARY_TRUNC_KEEP_N_LAST={MESSAGE_SUMMARY_TRUNC_KEEP_N_LAST}")
|
|
printd(f"token_counts={token_counts}")
|
|
printd(f"message_buffer_token_count={message_buffer_token_count}")
|
|
printd(f"desired_token_count_to_summarize={desired_token_count_to_summarize}")
|
|
printd(f"len(candidate_messages_to_summarize)={len(candidate_messages_to_summarize)}")
|
|
|
|
# If at this point there's nothing to summarize, throw an error
|
|
if len(candidate_messages_to_summarize) == 0:
|
|
raise LLMError(
|
|
f"Summarize error: tried to run summarize, but couldn't find enough messages to compress [len={len(self.messages)}, preserve_N={MESSAGE_SUMMARY_TRUNC_KEEP_N_LAST}]"
|
|
)
|
|
|
|
# Walk down the message buffer (front-to-back) until we hit the target token count
|
|
tokens_so_far = 0
|
|
cutoff = 0
|
|
for i, msg in enumerate(candidate_messages_to_summarize):
|
|
cutoff = i
|
|
tokens_so_far += token_counts[i]
|
|
if tokens_so_far > desired_token_count_to_summarize:
|
|
break
|
|
# Account for system message
|
|
cutoff += 1
|
|
|
|
# Try to make an assistant message come after the cutoff
|
|
try:
|
|
printd(f"Selected cutoff {cutoff} was a 'user', shifting one...")
|
|
if self.messages[cutoff]["role"] == "user":
|
|
new_cutoff = cutoff + 1
|
|
if self.messages[new_cutoff]["role"] == "user":
|
|
printd(f"Shifted cutoff {new_cutoff} is still a 'user', ignoring...")
|
|
cutoff = new_cutoff
|
|
except IndexError:
|
|
pass
|
|
|
|
message_sequence_to_summarize = self.messages[1:cutoff] # do NOT get rid of the system message
|
|
if len(message_sequence_to_summarize) == 1:
|
|
# This prevents a potential infinite loop of summarizing the same message over and over
|
|
raise LLMError(
|
|
f"Summarize error: tried to run summarize, but couldn't find enough messages to compress [len={len(message_sequence_to_summarize)} <= 1]"
|
|
)
|
|
else:
|
|
printd(f"Attempting to summarize {len(message_sequence_to_summarize)} messages [1:{cutoff}] of {len(self.messages)}")
|
|
|
|
# We can't do summarize logic properly if context_window is undefined
|
|
if self.config.context_window is None:
|
|
# Fallback if for some reason context_window is missing, just set to the default
|
|
print(f"{CLI_WARNING_PREFIX}could not find context_window in config, setting to default {LLM_MAX_TOKENS['DEFAULT']}")
|
|
print(f"{self.config}")
|
|
self.config.context_window = (
|
|
str(LLM_MAX_TOKENS[self.model])
|
|
if (self.model is not None and self.model in LLM_MAX_TOKENS)
|
|
else str(LLM_MAX_TOKENS["DEFAULT"])
|
|
)
|
|
summary = summarize_messages(agent_config=self.config, message_sequence_to_summarize=message_sequence_to_summarize)
|
|
printd(f"Got summary: {summary}")
|
|
|
|
# Metadata that's useful for the agent to see
|
|
all_time_message_count = self.messages_total
|
|
remaining_message_count = len(self.messages[cutoff:])
|
|
hidden_message_count = all_time_message_count - remaining_message_count
|
|
summary_message_count = len(message_sequence_to_summarize)
|
|
summary_message = package_summarize_message(summary, summary_message_count, hidden_message_count, all_time_message_count)
|
|
printd(f"Packaged into message: {summary_message}")
|
|
|
|
prior_len = len(self.messages)
|
|
self.trim_messages(cutoff)
|
|
packed_summary_message = {"role": "user", "content": summary_message}
|
|
self.prepend_to_messages([packed_summary_message])
|
|
|
|
# reset alert
|
|
self.agent_alerted_about_memory_pressure = False
|
|
|
|
printd(f"Ran summarizer, messages length {prior_len} -> {len(self.messages)}")
|
|
|
|
def heartbeat_is_paused(self):
|
|
"""Check if there's a requested pause on timed heartbeats"""
|
|
|
|
# Check if the pause has been initiated
|
|
if self.pause_heartbeats_start is None:
|
|
return False
|
|
|
|
# Check if it's been more than pause_heartbeats_minutes since pause_heartbeats_start
|
|
elapsed_time = datetime.datetime.now() - self.pause_heartbeats_start
|
|
return elapsed_time.total_seconds() < self.pause_heartbeats_minutes * 60
|
|
|
|
def get_ai_reply(
|
|
self,
|
|
message_sequence,
|
|
function_call="auto",
|
|
first_message=False, # hint
|
|
):
|
|
"""Get response from LLM API"""
|
|
try:
|
|
response = create(
|
|
agent_config=self.config,
|
|
messages=message_sequence,
|
|
functions=self.functions,
|
|
function_call=function_call,
|
|
# hint
|
|
first_message=first_message,
|
|
)
|
|
# special case for 'length'
|
|
if response.choices[0].finish_reason == "length":
|
|
raise Exception("Finish reason was length (maximum context length)")
|
|
|
|
# catches for soft errors
|
|
if response.choices[0].finish_reason not in ["stop", "function_call"]:
|
|
raise Exception(f"API call finish with bad finish reason: {response}")
|
|
|
|
# unpack with response.choices[0].message.content
|
|
return response
|
|
except Exception as e:
|
|
raise e
|