MemGPT/memgpt/server/server.py

616 lines
26 KiB
Python

from abc import abstractmethod
from typing import Union, Callable
import json
import logging
from threading import Lock
from functools import wraps
from fastapi import HTTPException
from memgpt.system import package_user_message
from memgpt.config import MemGPTConfig
from memgpt.agent import Agent
import memgpt.system as system
import memgpt.constants as constants
from memgpt.cli.cli import attach
# from memgpt.agent_store.storage import StorageConnector
from memgpt.metadata import MetadataStore
import memgpt.presets.presets as presets
import memgpt.utils as utils
import memgpt.server.utils as server_utils
from memgpt.persistence_manager import PersistenceManager, LocalStateManager
from memgpt.data_types import Source, Passage, Document, User, AgentState
# TODO use custom interface
from memgpt.interface import CLIInterface # for printing to terminal
from memgpt.interface import AgentInterface # abstract
logger = logging.getLogger(__name__)
class Server(object):
"""Abstract server class that supports multi-agent multi-user"""
@abstractmethod
def list_agents(self, user_id: str) -> dict:
"""List all available agents to a user"""
raise NotImplementedError
@abstractmethod
def get_agent_messages(self, user_id: str, agent_id: str, start: int, count: int) -> list:
"""Paginated query of in-context messages in agent message queue"""
raise NotImplementedError
@abstractmethod
def get_agent_memory(self, user_id: str, agent_id: str) -> dict:
"""Return the memory of an agent (core memory + non-core statistics)"""
raise NotImplementedError
@abstractmethod
def get_agent_config(self, user_id: str, agent_id: str) -> dict:
"""Return the config of an agent"""
raise NotImplementedError
@abstractmethod
def get_server_config(self, user_id: str) -> dict:
"""Return the base config"""
raise NotImplementedError
@abstractmethod
def update_agent_core_memory(self, user_id: str, agent_id: str, new_memory_contents: dict) -> dict:
"""Update the agents core memory block, return the new state"""
raise NotImplementedError
@abstractmethod
def create_agent(
self,
user_id: str,
agent_config: Union[dict, AgentState],
interface: Union[AgentInterface, None],
persistence_manager: Union[PersistenceManager, None],
) -> str:
"""Create a new agent using a config"""
raise NotImplementedError
@abstractmethod
def user_message(self, user_id: str, agent_id: str, message: str) -> None:
"""Process a message from the user, internally calls step"""
raise NotImplementedError
@abstractmethod
def system_message(self, user_id: str, agent_id: str, message: str) -> None:
"""Process a message from the system, internally calls step"""
raise NotImplementedError
@abstractmethod
def run_command(self, user_id: str, agent_id: str, command: str) -> Union[str, None]:
"""Run a command on the agent, e.g. /memory
May return a string with a message generated by the command
"""
raise NotImplementedError
class LockingServer(Server):
"""Basic support for concurrency protections (all requests that modify an agent lock the agent until the operation is complete)"""
# Locks for each agent
_agent_locks = {}
@staticmethod
def agent_lock_decorator(func: Callable) -> Callable:
@wraps(func)
def wrapper(self, user_id: str, agent_id: str, *args, **kwargs):
# logger.info("Locking check")
# Initialize the lock for the agent_id if it doesn't exist
if agent_id not in self._agent_locks:
# logger.info(f"Creating lock for agent_id = {agent_id}")
self._agent_locks[agent_id] = Lock()
# Check if the agent is currently locked
if not self._agent_locks[agent_id].acquire(blocking=False):
# logger.info(f"agent_id = {agent_id} is busy")
raise HTTPException(status_code=423, detail=f"Agent '{agent_id}' is currently busy.")
try:
# Execute the function
# logger.info(f"running function on agent_id = {agent_id}")
return func(self, user_id, agent_id, *args, **kwargs)
finally:
# Release the lock
# logger.info(f"releasing lock on agent_id = {agent_id}")
self._agent_locks[agent_id].release()
return wrapper
@agent_lock_decorator
def user_message(self, user_id: str, agent_id: str, message: str) -> None:
raise NotImplementedError
@agent_lock_decorator
def run_command(self, user_id: str, agent_id: str, command: str) -> Union[str, None]:
raise NotImplementedError
# TODO actually use "user_id" for something
class SyncServer(LockingServer):
"""Simple single-threaded / blocking server process"""
def __init__(
self,
chaining: bool = True,
max_chaining_steps: bool = None,
# default_interface_cls: AgentInterface = CLIInterface,
default_interface: AgentInterface = CLIInterface(),
# default_persistence_manager_cls: PersistenceManager = LocalStateManager,
):
"""Server process holds in-memory agents that are being run"""
# List of {'user_id': user_id, 'agent_id': agent_id, 'agent': agent_obj} dicts
self.active_agents = []
# chaining = whether or not to run again if request_heartbeat=true
self.chaining = chaining
# if chaining == true, what's the max number of times we'll chain before yielding?
# none = no limit, can go on forever
self.max_chaining_steps = max_chaining_steps
# The default interface that will get assigned to agents ON LOAD
# self.default_interface_cls = default_interface_cls
self.default_interface = default_interface
# The default persistence manager that will get assigned to agents ON CREATION
# self.default_persistence_manager_cls = default_persistence_manager_cls
# Initialize the connection to the DB
self.config = MemGPTConfig()
self.ms = MetadataStore(self.config)
def save_agents(self):
"""Saves all the agents that are in the in-memory object store"""
for agent_d in self.active_agents:
try:
agent_d["agent"].save()
logger.info(f"Saved agent {agent_d['agent_id']}")
except Exception as e:
logger.exception(f"Error occurred while trying to save agent {agent_d['agent_id']}:\n{e}")
def _get_agent(self, user_id: str, agent_id: str) -> Union[Agent, None]:
"""Get the agent object from the in-memory object store"""
for d in self.active_agents:
if d["user_id"] == user_id and d["agent_id"] == agent_id:
return d["agent"]
return None
def _add_agent(self, user_id: str, agent_id: str, agent_obj: Agent) -> None:
"""Put an agent object inside the in-memory object store"""
# Make sure the agent doesn't already exist
if self._get_agent(user_id=user_id, agent_id=agent_id) is not None:
raise KeyError(f"Agent (user={user_id}, agent={agent_id}) is already loaded")
# Add Agent instance to the in-memory list
self.active_agents.append(
{
"user_id": user_id,
"agent_id": agent_id,
"agent": agent_obj,
}
)
def _load_agent(self, user_id: str, agent_id: str, interface: Union[AgentInterface, None] = None) -> Agent:
"""Loads a saved agent into memory (if it doesn't exist, throw an error)"""
# If an interface isn't specified, use the default
if interface is None:
interface = self.default_interface
try:
agent_state = self.ms.get_agent(agent_id=agent_id, user_id=user_id)
if not agent_state:
raise ValueError(f"agent_id {agent_id} does not exist")
# Instantiate an agent object using the state retrieved
memgpt_agent = Agent(agent_state=agent_state, interface=interface)
# Add the agent to the in-memory store and return its reference
self._add_agent(user_id=user_id, agent_id=agent_id, agent_obj=memgpt_agent)
return memgpt_agent
except Exception as e:
logger.exception(f"Error occurred while trying to get agent {agent_id}:\n{e}")
def _get_or_load_agent(self, user_id: str, agent_id: str) -> Agent:
"""Check if the agent is in-memory, then load"""
memgpt_agent = self._get_agent(user_id=user_id, agent_id=agent_id)
if not memgpt_agent:
memgpt_agent = self._load_agent(user_id=user_id, agent_id=agent_id)
return memgpt_agent
def _step(self, user_id: str, agent_id: str, input_message: str) -> None:
"""Send the input message through the agent"""
logger.debug(f"Got input message: {input_message}")
# Get the agent object (loaded in memory)
memgpt_agent = self._get_or_load_agent(user_id=user_id, agent_id=agent_id)
if memgpt_agent is None:
raise KeyError(f"Agent (user={user_id}, agent={agent_id}) is not loaded")
logger.debug(f"Starting agent step")
no_verify = True
next_input_message = input_message
counter = 0
while True:
new_messages, heartbeat_request, function_failed, token_warning = memgpt_agent.step(
next_input_message, first_message=False, skip_verify=no_verify
)
counter += 1
# Chain stops
if not self.chaining:
logger.debug("No chaining, stopping after one step")
break
elif self.max_chaining_steps is not None and counter > self.max_chaining_steps:
logger.debug(f"Hit max chaining steps, stopping after {counter} steps")
break
# Chain handlers
elif token_warning:
next_input_message = system.get_token_limit_warning()
continue # always chain
elif function_failed:
next_input_message = system.get_heartbeat(constants.FUNC_FAILED_HEARTBEAT_MESSAGE)
continue # always chain
elif heartbeat_request:
next_input_message = system.get_heartbeat(constants.REQ_HEARTBEAT_MESSAGE)
continue # always chain
# MemGPT no-op / yield
else:
break
memgpt_agent.interface.step_yield()
logger.debug(f"Finished agent step")
def _command(self, user_id: str, agent_id: str, command: str) -> Union[str, None]:
"""Process a CLI command"""
logger.debug(f"Got command: {command}")
# Get the agent object (loaded in memory)
memgpt_agent = self._get_or_load_agent(user_id=user_id, agent_id=agent_id)
if command.lower() == "exit":
# exit not supported on server.py
raise ValueError(command)
elif command.lower() == "save" or command.lower() == "savechat":
memgpt_agent.save()
elif command.lower() == "attach":
# Different from CLI, we extract the data source name from the command
command = command.strip().split()
try:
data_source = int(command[1])
except:
raise ValueError(command)
# TODO: check if agent already has it
data_source_options = StorageConnector.list_loaded_data()
if len(data_source_options) == 0:
raise ValueError('No sources available. You must load a souce with "memgpt load ..." before running /attach.')
elif data_source not in data_source_options:
raise ValueError(f"Invalid data source name: {data_source} (options={data_source_options})")
else:
# attach new data
attach(memgpt_agent.config.name, data_source)
# update agent config
memgpt_agent.config.attach_data_source(data_source)
# reload agent with new data source
# TODO: maybe make this less ugly...
memgpt_agent.persistence_manager.archival_memory.storage = StorageConnector.get_storage_connector(
agent_config=memgpt_agent.config
)
elif command.lower() == "dump" or command.lower().startswith("dump "):
# Check if there's an additional argument that's an integer
command = command.strip().split()
amount = int(command[1]) if len(command) > 1 and command[1].isdigit() else 0
if amount == 0:
memgpt_agent.interface.print_messages(memgpt_agent.messages, dump=True)
else:
memgpt_agent.interface.print_messages(memgpt_agent.messages[-min(amount, len(memgpt_agent.messages)) :], dump=True)
elif command.lower() == "dumpraw":
memgpt_agent.interface.print_messages_raw(memgpt_agent.messages)
elif command.lower() == "memory":
ret_str = (
f"\nDumping memory contents:\n"
+ f"\n{str(memgpt_agent.memory)}"
+ f"\n{str(memgpt_agent.persistence_manager.archival_memory)}"
+ f"\n{str(memgpt_agent.persistence_manager.recall_memory)}"
)
return ret_str
elif command.lower() == "pop" or command.lower().startswith("pop "):
# Check if there's an additional argument that's an integer
command = command.strip().split()
pop_amount = int(command[1]) if len(command) > 1 and command[1].isdigit() else 3
n_messages = len(memgpt_agent.messages)
MIN_MESSAGES = 2
if n_messages <= MIN_MESSAGES:
logger.info(f"Agent only has {n_messages} messages in stack, none left to pop")
elif n_messages - pop_amount < MIN_MESSAGES:
logger.info(f"Agent only has {n_messages} messages in stack, cannot pop more than {n_messages - MIN_MESSAGES}")
else:
logger.info(f"Popping last {pop_amount} messages from stack")
for _ in range(min(pop_amount, len(memgpt_agent.messages))):
memgpt_agent.messages.pop()
elif command.lower() == "retry":
# TODO this needs to also modify the persistence manager
logger.info(f"Retrying for another answer")
while len(memgpt_agent.messages) > 0:
if memgpt_agent.messages[-1].get("role") == "user":
# we want to pop up to the last user message and send it again
user_message = memgpt_agent.messages[-1].get("content")
memgpt_agent.messages.pop()
break
memgpt_agent.messages.pop()
elif command.lower() == "rethink" or command.lower().startswith("rethink "):
# TODO this needs to also modify the persistence manager
if len(command) < len("rethink "):
logger.warning("Missing text after the command")
else:
for x in range(len(memgpt_agent.messages) - 1, 0, -1):
if memgpt_agent.messages[x].get("role") == "assistant":
text = command[len("rethink ") :].strip()
memgpt_agent.messages[x].update({"content": text})
break
elif command.lower() == "rewrite" or command.lower().startswith("rewrite "):
# TODO this needs to also modify the persistence manager
if len(command) < len("rewrite "):
logger.warning("Missing text after the command")
else:
for x in range(len(memgpt_agent.messages) - 1, 0, -1):
if memgpt_agent.messages[x].get("role") == "assistant":
text = command[len("rewrite ") :].strip()
args = json.loads(memgpt_agent.messages[x].get("function_call").get("arguments"))
args["message"] = text
memgpt_agent.messages[x].get("function_call").update({"arguments": json.dumps(args)})
break
# No skip options
elif command.lower() == "wipe":
# exit not supported on server.py
raise ValueError(command)
elif command.lower() == "heartbeat":
input_message = system.get_heartbeat()
self._step(user_id=user_id, agent_id=agent_id, input_message=input_message)
elif command.lower() == "memorywarning":
input_message = system.get_token_limit_warning()
self._step(user_id=user_id, agent_id=agent_id, input_message=input_message)
@LockingServer.agent_lock_decorator
def user_message(self, user_id: str, agent_id: str, message: str) -> None:
"""Process an incoming user message and feed it through the MemGPT agent"""
# Basic input sanitization
if not isinstance(message, str) or len(message) == 0:
raise ValueError(f"Invalid input: '{message}'")
# If the input begins with a command prefix, reject
elif message.startswith("/"):
raise ValueError(f"Invalid input: '{message}'")
# Else, process it as a user message to be fed to the agent
else:
# Package the user message first
packaged_user_message = package_user_message(user_message=message)
# Run the agent state forward
self._step(user_id=user_id, agent_id=agent_id, input_message=packaged_user_message)
@LockingServer.agent_lock_decorator
def system_message(self, user_id: str, agent_id: str, message: str) -> None:
"""Process an incoming system message and feed it through the MemGPT agent"""
from memgpt.utils import printd
# Basic input sanitization
if not isinstance(message, str) or len(message) == 0:
raise ValueError(f"Invalid input: '{message}'")
# If the input begins with a command prefix, reject
elif message.startswith("/"):
raise ValueError(f"Invalid input: '{message}'")
# Else, process it as a user message to be fed to the agent
else:
# Package the user message first
packaged_system_message = package_system_message(system_message=message)
# Run the agent state forward
self._step(user_id=user_id, agent_id=agent_id, input_message=packaged_system_message)
@LockingServer.agent_lock_decorator
def run_command(self, user_id: str, agent_id: str, command: str) -> Union[str, None]:
"""Run a command on the agent"""
# If the input begins with a command prefix, attempt to process it as a command
if command.startswith("/"):
if len(command) > 1:
command = command[1:] # strip the prefix
return self._command(user_id=user_id, agent_id=agent_id, command=command)
def create_agent(
self,
user_id: str,
agent_config: dict,
interface: Union[AgentInterface, None] = None,
# persistence_manager: Union[PersistenceManager, None] = None,
) -> AgentState:
"""Create a new agent using a config"""
# Initialize the agent based on the provided configuration
if not isinstance(agent_config, dict):
raise ValueError(f"agent_config must be provided as a dictionary")
if interface is None:
# interface = self.default_interface_cls()
interface = self.default_interface
# if persistence_manager is None:
# persistence_manager = self.default_persistence_manager_cls(agent_config=agent_config)
# TODO actually use the user_id that was passed into the server
USER_ID = self.config.anon_clientid
# create user and agent
user = User(id=USER_ID)
user = self.ms.get_user(user_id=USER_ID)
if not user:
user = User(id=USER_ID)
self.ms.create_user(user)
agent_state = AgentState(
user_id=user.id,
name=agent_config["name"] if "name" in agent_config else utils.create_random_username(),
preset=agent_config["preset"] if "preset" in agent_config else user.default_preset,
# TODO we need to allow passing raw persona/human text via the server request
persona=agent_config["persona"] if "persona" in agent_config else user.default_persona,
human=agent_config["human"] if "human" in agent_config else user.default_human,
llm_config=agent_config["llm_config"] if "llm_config" in agent_config else user.default_llm_config,
embedding_config=agent_config["embedding_config"] if "embedding_config" in agent_config else user.default_embedding_config,
)
agent = presets.create_agent_from_preset(agent_state=agent_state, interface=interface)
# TODO where should we handle saving of the AgentState?
agent.save()
# try:
# self.ms.create_agent(agent)
# except ValueError:
# agent name under user.id already exists, not OK
# raise
logger.info(f"Created new agent from config: {agent}")
return agent.config
def delete_agent(
self,
user_id: str,
agent_id: str,
):
# Make sure the user owns the agent
# TODO use real user_id
USER_ID = self.config.anon_clientid
agent = self.ms.get_agent(agent_id=agent_id, user_id=USER_ID)
if agent is not None:
self.ms.delete_agent(agent_id=agent_id)
def list_agents(self, user_id: str) -> dict:
"""List all available agents to a user"""
# TODO actually use the user_id that was passed into the server
USER_ID = self.config.anon_clientid
agents_list = self.ms.list_agents(user_id=USER_ID)
return {"num_agents": len(agents_list), "agents": [state.name for state in agents_list]}
def get_agent_memory(self, user_id: str, agent_id: str) -> dict:
"""Return the memory of an agent (core memory + non-core statistics)"""
# Get the agent object (loaded in memory)
memgpt_agent = self._get_or_load_agent(user_id=user_id, agent_id=agent_id)
core_memory = memgpt_agent.memory
recall_memory = memgpt_agent.persistence_manager.recall_memory
archival_memory = memgpt_agent.persistence_manager.archival_memory
memory_obj = {
"core_memory": {
"persona": core_memory.persona,
"human": core_memory.human,
},
"recall_memory": len(recall_memory) if recall_memory is not None else None,
"archival_memory": len(archival_memory) if archival_memory is not None else None,
}
return memory_obj
def get_agent_messages(self, user_id: str, agent_id: str, start: int, count: int) -> list:
"""Paginated query of in-context messages in agent message queue"""
# Get the agent object (loaded in memory)
memgpt_agent = self._get_or_load_agent(user_id=user_id, agent_id=agent_id)
if start < 0 or count < 0:
raise ValueError("Start and count values should be non-negative")
# Reverse the list to make it in reverse chronological order
reversed_messages = memgpt_agent.messages[::-1]
# Check if start is within the range of the list
if start >= len(reversed_messages):
raise IndexError("Start index is out of range")
# Calculate the end index, ensuring it does not exceed the list length
end_index = min(start + count, len(reversed_messages))
# Slice the list for pagination
paginated_messages = reversed_messages[start:end_index]
return paginated_messages
def get_agent_config(self, user_id: str, agent_id: str) -> dict:
"""Return the config of an agent"""
# Get the agent object (loaded in memory)
memgpt_agent = self._get_or_load_agent(user_id=user_id, agent_id=agent_id)
agent_config = vars(memgpt_agent.config)
return agent_config
def get_server_config(self) -> dict:
"""Return the base config"""
# TODO: do we need a seperate server config?
base_config = vars(self.config)
def clean_keys(config):
config_copy = config.copy()
for k, v in config.items():
if k == "key" or "_key" in k:
config_copy[k] = server_utils.shorten_key_middle(v, chars_each_side=5)
return config_copy
clean_base_config = clean_keys(base_config)
return clean_base_config
def update_agent_core_memory(self, user_id: str, agent_id: str, new_memory_contents: dict) -> dict:
"""Update the agents core memory block, return the new state"""
# Get the agent object (loaded in memory)
memgpt_agent = self._get_or_load_agent(user_id=user_id, agent_id=agent_id)
old_core_memory = self.get_agent_memory(user_id=user_id, agent_id=agent_id)["core_memory"]
new_core_memory = old_core_memory.copy()
modified = False
if "persona" in new_memory_contents and new_memory_contents["persona"] is not None:
new_persona = new_memory_contents["persona"]
if old_core_memory["persona"] != new_persona:
new_core_memory["persona"] = new_persona
memgpt_agent.memory.edit_persona(new_persona)
modified = True
if "human" in new_memory_contents and new_memory_contents["human"] is not None:
new_human = new_memory_contents["human"]
if old_core_memory["human"] != new_human:
new_core_memory["human"] = new_human
memgpt_agent.memory.edit_human(new_human)
modified = True
# If we modified the memory contents, we need to rebuild the memory block inside the system message
if modified:
memgpt_agent.rebuild_memory()
return {
"old_core_memory": old_core_memory,
"new_core_memory": new_core_memory,
"modified": modified,
}