MemGPT/examples/docs/example.py
cthomas a6bf85b01e
fix: message packing and tool rules issues (#2406)
Co-authored-by: cpacker <packercharles@gmail.com>
Co-authored-by: Sarah Wooders <sarahwooders@gmail.com>
Co-authored-by: Shubham Naik <shubham.naik10@gmail.com>
Co-authored-by: Matthew Zhou <mattzh1314@gmail.com>
Co-authored-by: Shubham Naik <shub@memgpt.ai>
2025-01-31 14:19:36 -08:00

120 lines
3.3 KiB
Python

from letta_client import CreateBlock, Letta, MessageCreate
"""
Make sure you run the Letta server before running this example.
See: https://docs.letta.com/quickstart
If you're using Letta Cloud, replace 'baseURL' with 'token'
See: https://docs.letta.com/api-reference/overview
Execute this script using `poetry run python3 example.py`
"""
client = Letta(
base_url="http://localhost:8283",
)
agent = client.agents.create(
memory_blocks=[
CreateBlock(
value="Name: Caren",
label="human",
),
],
model="openai/gpt-4o-mini",
embedding="openai/text-embedding-ada-002",
)
print(f"Created agent with name {agent.name}")
message_text = "What's my name?"
response = client.agents.messages.create(
agent_id=agent.id,
messages=[
MessageCreate(
role="user",
content=message_text,
),
],
)
print(f"Sent message to agent {agent.name}: {message_text}")
print(f"Agent thoughts: {response.messages[0].reasoning}")
print(f"Agent response: {response.messages[1].content}")
def secret_message():
"""Return a secret message."""
return "Hello world!"
tool = client.tools.upsert_from_function(
func=secret_message,
)
client.agents.tools.attach(agent_id=agent.id, tool_id=tool.id)
print(f"Created tool {tool.name} and attached to agent {agent.name}")
message_text = "Run secret message tool and tell me what it returns"
response = client.agents.messages.create(
agent_id=agent.id,
messages=[
MessageCreate(
role="user",
content=message_text,
),
],
)
print(f"Sent message to agent {agent.name}: {message_text}")
print(f"Agent thoughts: {response.messages[0].reasoning}")
print(f"Tool call information: {response.messages[1].tool_call}")
print(f"Tool response information: {response.messages[2].status}")
print(f"Agent thoughts: {response.messages[3].reasoning}")
print(f"Agent response: {response.messages[4].content}")
agent_copy = client.agents.create(
model="openai/gpt-4o-mini",
embedding="openai/text-embedding-ada-002",
)
block = client.agents.core_memory.retrieve_block(agent.id, "human")
agent_copy = client.agents.core_memory.attach_block(agent_copy.id, block.id)
print(f"Created agent copy with shared memory named {agent_copy.name}")
message_text = "My name isn't Caren, it's Sarah. Please update your core memory with core_memory_replace"
response = client.agents.messages.create(
agent_id=agent_copy.id,
messages=[
MessageCreate(
role="user",
content=message_text,
),
],
)
print(f"Sent message to agent {agent_copy.name}: {message_text}")
block = client.agents.core_memory.retrieve_block(agent_copy.id, "human")
print(f"New core memory for agent {agent_copy.name}: {block.value}")
message_text = "What's my name?"
response = client.agents.messages.create(
agent_id=agent_copy.id,
messages=[
MessageCreate(
role="user",
content=message_text,
),
],
)
print(f"Sent message to agent {agent_copy.name}: {message_text}")
print(f"Agent thoughts: {response.messages[0].reasoning}")
print(f"Agent response: {response.messages[1].content}")
client.agents.delete(agent_id=agent.id)
client.agents.delete(agent_id=agent_copy.id)
print(f"Deleted agents {agent.name} and {agent_copy.name}")