mirror of
https://github.com/cpacker/MemGPT.git
synced 2025-06-03 04:30:22 +00:00
87 lines
3.0 KiB
Python
87 lines
3.0 KiB
Python
from typing import List, Optional, Union
|
|
|
|
from letta.agent import Agent, save_agent
|
|
from letta.interface import AgentInterface
|
|
from letta.metadata import MetadataStore
|
|
from letta.schemas.agent import AgentState
|
|
from letta.schemas.message import Message
|
|
from letta.schemas.openai.chat_completion_response import UsageStatistics
|
|
from letta.schemas.usage import LettaUsageStatistics
|
|
from letta.schemas.user import User
|
|
|
|
|
|
def send_thinking_message(self: "Agent", message: str) -> Optional[str]:
|
|
"""
|
|
Sends a thinking message so that the model can reason out loud before responding.
|
|
|
|
Args:
|
|
message (str): Message contents. All unicode (including emojis) are supported.
|
|
|
|
Returns:
|
|
Optional[str]: None is always returned as this function does not produce a response.
|
|
"""
|
|
self.interface.internal_monologue(message, msg_obj=self._messages[-1])
|
|
return None
|
|
|
|
|
|
def send_final_message(self: "Agent", message: str) -> Optional[str]:
|
|
"""
|
|
Sends a final message to the human user after thinking for a while.
|
|
|
|
Args:
|
|
message (str): Message contents. All unicode (including emojis) are supported.
|
|
|
|
Returns:
|
|
Optional[str]: None is always returned as this function does not produce a response.
|
|
"""
|
|
self.interface.internal_monologue(message, msg_obj=self._messages[-1])
|
|
return None
|
|
|
|
|
|
class O1Agent(Agent):
|
|
def __init__(
|
|
self,
|
|
interface: AgentInterface,
|
|
agent_state: AgentState,
|
|
user: User,
|
|
max_thinking_steps: int = 10,
|
|
first_message_verify_mono: bool = False,
|
|
):
|
|
super().__init__(interface, agent_state, user)
|
|
self.max_thinking_steps = max_thinking_steps
|
|
self.first_message_verify_mono = first_message_verify_mono
|
|
|
|
def step(
|
|
self,
|
|
messages: Union[Message, List[Message]],
|
|
chaining: bool = True,
|
|
max_chaining_steps: Optional[int] = None,
|
|
ms: Optional[MetadataStore] = None,
|
|
**kwargs,
|
|
) -> LettaUsageStatistics:
|
|
"""Run Agent.inner_step in a loop, terminate when final thinking message is sent or max_thinking_steps is reached"""
|
|
# assert ms is not None, "MetadataStore is required"
|
|
next_input_message = messages if isinstance(messages, list) else [messages]
|
|
counter = 0
|
|
total_usage = UsageStatistics()
|
|
step_count = 0
|
|
while step_count < self.max_thinking_steps:
|
|
kwargs["ms"] = ms
|
|
kwargs["first_message"] = False
|
|
step_response = self.inner_step(
|
|
messages=next_input_message,
|
|
**kwargs,
|
|
)
|
|
usage = step_response.usage
|
|
step_count += 1
|
|
total_usage += usage
|
|
counter += 1
|
|
self.interface.step_complete()
|
|
# check if it is final thinking message
|
|
if step_response.messages[-1].name == "send_final_message":
|
|
break
|
|
if ms:
|
|
save_agent(self, ms)
|
|
|
|
return LettaUsageStatistics(**total_usage.model_dump(), step_count=step_count)
|