MemGPT/letta/orm/block.py

125 lines
5.5 KiB
Python

from typing import TYPE_CHECKING, List, Optional, Type
from sqlalchemy import JSON, BigInteger, ForeignKey, Index, Integer, String, UniqueConstraint, event
from sqlalchemy.orm import Mapped, attributes, declared_attr, mapped_column, relationship
from letta.constants import CORE_MEMORY_BLOCK_CHAR_LIMIT
from letta.orm.block_history import BlockHistory
from letta.orm.blocks_agents import BlocksAgents
from letta.orm.mixins import OrganizationMixin
from letta.orm.sqlalchemy_base import SqlalchemyBase
from letta.schemas.block import Block as PydanticBlock
from letta.schemas.block import Human, Persona
if TYPE_CHECKING:
from letta.orm import Organization
from letta.orm.identity import Identity
class Block(OrganizationMixin, SqlalchemyBase):
"""Blocks are sections of the LLM context, representing a specific part of the total Memory"""
__tablename__ = "block"
__pydantic_model__ = PydanticBlock
# This may seem redundant, but is necessary for the BlocksAgents composite FK relationship
__table_args__ = (
UniqueConstraint("id", "label", name="unique_block_id_label"),
Index("created_at_label_idx", "created_at", "label"),
)
template_name: Mapped[Optional[str]] = mapped_column(
nullable=True, doc="the unique name that identifies a block in a human-readable way"
)
description: Mapped[Optional[str]] = mapped_column(nullable=True, doc="a description of the block for context")
label: Mapped[str] = mapped_column(doc="the type of memory block in use, ie 'human', 'persona', 'system'")
is_template: Mapped[bool] = mapped_column(
doc="whether the block is a template (e.g. saved human/persona options as baselines for other templates)", default=False
)
value: Mapped[str] = mapped_column(doc="Text content of the block for the respective section of core memory.")
limit: Mapped[BigInteger] = mapped_column(Integer, default=CORE_MEMORY_BLOCK_CHAR_LIMIT, doc="Character limit of the block.")
metadata_: Mapped[Optional[dict]] = mapped_column(JSON, default={}, doc="arbitrary information related to the block.")
# history pointers / locking mechanisms
current_history_entry_id: Mapped[Optional[str]] = mapped_column(
String, ForeignKey("block_history.id", name="fk_block_current_history_entry", use_alter=True), nullable=True, index=True
)
version: Mapped[int] = mapped_column(
Integer, nullable=False, default=1, server_default="1", doc="Optimistic locking version counter, incremented on each state change."
)
# NOTE: This takes advantage of built-in optimistic locking functionality by SqlAlchemy
# https://docs.sqlalchemy.org/en/20/orm/versioning.html
__mapper_args__ = {"version_id_col": version}
# relationships
organization: Mapped[Optional["Organization"]] = relationship("Organization")
agents: Mapped[List["Agent"]] = relationship(
"Agent",
secondary="blocks_agents",
lazy="selectin",
passive_deletes=True, # Ensures SQLAlchemy doesn't fetch blocks_agents rows before deleting
back_populates="core_memory",
doc="Agents associated with this block.",
)
identities: Mapped[List["Identity"]] = relationship(
"Identity",
secondary="identities_blocks",
lazy="selectin",
back_populates="blocks",
passive_deletes=True,
)
groups: Mapped[List["Group"]] = relationship(
"Group",
secondary="groups_blocks",
lazy="selectin",
back_populates="shared_blocks",
passive_deletes=True,
)
def to_pydantic(self) -> Type:
match self.label:
case "human":
Schema = Human
case "persona":
Schema = Persona
case _:
Schema = PydanticBlock
model_dict = {k: v for k, v in self.__dict__.items() if k in self.__pydantic_model__.model_fields}
model_dict["metadata"] = self.metadata_
return Schema.model_validate(model_dict)
@declared_attr
def current_history_entry(cls) -> Mapped[Optional["BlockHistory"]]:
# Relationship to easily load the specific history entry that is current
return relationship(
"BlockHistory",
primaryjoin=lambda: cls.current_history_entry_id == BlockHistory.id,
foreign_keys=[cls.current_history_entry_id],
lazy="joined", # Typically want current history details readily available
post_update=True,
) # Helps manage potential FK cycles
@event.listens_for(Block, "after_update") # Changed from 'before_update'
def block_before_update(mapper, connection, target):
"""Handle updating BlocksAgents when a block's label changes."""
label_history = attributes.get_history(target, "label")
if not label_history.has_changes():
return
blocks_agents = BlocksAgents.__table__
connection.execute(
blocks_agents.update()
.where(blocks_agents.c.block_id == target.id, blocks_agents.c.block_label == label_history.deleted[0])
.values(block_label=label_history.added[0])
)
@event.listens_for(Block, "before_insert")
@event.listens_for(Block, "before_update")
def validate_value_length(mapper, connection, target):
"""Ensure the value length does not exceed the limit."""
if target.value and len(target.value) > target.limit:
raise ValueError(
f"Value length ({len(target.value)}) exceeds the limit ({target.limit}) for block with label '{target.label}' and id '{target.id}'."
)