MemGPT/memgpt/main.py
Charles Packer b789549d02
Configurable presets to support easy extension of MemGPT's function set (#420)
* partial

* working schema builder, tested that it matches the hand-written schemas

* correct another schema diff

* refactor

* basic working test

* refactored preset creation to use yaml files

* added docstring-parser

* add code for dynamic function linking in agent loading

* pretty schema diff printer

* support pulling from ~/.memgpt/functions/*.py

* clean

* allow looking for system prompts in ~/.memgpt/system_prompts

* create ~/.memgpt/system_prompts if it doesn't exist

* pull presets from ~/.memgpt/presets in addition to examples folder

* add support for loading agent configs that have additional keys

---------

Co-authored-by: Sarah Wooders <sarahwooders@gmail.com>
2023-11-13 10:43:28 -08:00

637 lines
26 KiB
Python

import shutil
import configparser
import uuid
import logging
import glob
import os
import sys
import pickle
import traceback
import json
import questionary
import typer
from rich.console import Console
from prettytable import PrettyTable
from .interface import print_messages
console = Console()
import memgpt.interface # for printing to terminal
import memgpt.agent as agent
import memgpt.system as system
import memgpt.utils as utils
import memgpt.presets.presets as presets
import memgpt.constants as constants
import memgpt.personas.personas as personas
import memgpt.humans.humans as humans
from memgpt.persistence_manager import (
LocalStateManager,
InMemoryStateManager,
InMemoryStateManagerWithPreloadedArchivalMemory,
InMemoryStateManagerWithFaiss,
)
from memgpt.cli.cli import run, attach, version
from memgpt.cli.cli_config import configure, list, add
from memgpt.cli.cli_load import app as load_app
from memgpt.config import Config, MemGPTConfig, AgentConfig
from memgpt.constants import MEMGPT_DIR
from memgpt.agent import Agent
from memgpt.openai_tools import (
configure_azure_support,
check_azure_embeddings,
get_set_azure_env_vars,
)
from memgpt.connectors.storage import StorageConnector
app = typer.Typer(pretty_exceptions_enable=False)
app.command(name="run")(run)
app.command(name="version")(version)
app.command(name="attach")(attach)
app.command(name="configure")(configure)
app.command(name="list")(list)
app.command(name="add")(add)
# load data commands
app.add_typer(load_app, name="load")
def clear_line(strip_ui=False):
if strip_ui:
return
if os.name == "nt": # for windows
console.print("\033[A\033[K", end="")
else: # for linux
sys.stdout.write("\033[2K\033[G")
sys.stdout.flush()
def save(memgpt_agent, cfg):
filename = utils.get_local_time().replace(" ", "_").replace(":", "_")
filename = f"{filename}.json"
directory = os.path.join(MEMGPT_DIR, "saved_state")
filename = os.path.join(directory, filename)
try:
if not os.path.exists(directory):
os.makedirs(directory)
memgpt_agent.save_to_json_file(filename)
print(f"Saved checkpoint to: {filename}")
cfg.agent_save_file = filename
except Exception as e:
print(f"Saving state to {filename} failed with: {e}")
# save the persistence manager too
filename = filename.replace(".json", ".persistence.pickle")
try:
memgpt_agent.persistence_manager.save(filename)
print(f"Saved persistence manager to: {filename}")
cfg.persistence_manager_save_file = filename
except Exception as e:
print(f"Saving persistence manager to {filename} failed with: {e}")
cfg.write_config()
def load(memgpt_agent, filename):
if filename is not None:
if filename[-5:] != ".json":
filename += ".json"
try:
memgpt_agent.load_from_json_file_inplace(filename)
print(f"Loaded checkpoint {filename}")
except Exception as e:
print(f"Loading {filename} failed with: {e}")
else:
# Load the latest file
save_path = os.path.join(constants.MEMGPT_DIR, "saved_state")
print(f"/load warning: no checkpoint specified, loading most recent checkpoint from {save_path} instead")
json_files = glob.glob(os.path.join(save_path, "*.json")) # This will list all .json files in the current directory.
# Check if there are any json files.
if not json_files:
print(f"/load error: no .json checkpoint files found")
return
else:
# Sort files based on modified timestamp, with the latest file being the first.
filename = max(json_files, key=os.path.getmtime)
try:
memgpt_agent.load_from_json_file_inplace(filename)
print(f"Loaded checkpoint {filename}")
except Exception as e:
print(f"Loading {filename} failed with: {e}")
# need to load persistence manager too
filename = filename.replace(".json", ".persistence.pickle")
try:
memgpt_agent.persistence_manager = InMemoryStateManager.load(
filename
) # TODO(fixme):for different types of persistence managers that require different load/save methods
print(f"Loaded persistence manager from {filename}")
except Exception as e:
print(f"/load warning: loading persistence manager from {filename} failed with: {e}")
@app.callback(invoke_without_command=True) # make default command
# @app.command("legacy-run")
def legacy_run(
ctx: typer.Context,
persona: str = typer.Option(None, help="Specify persona"),
human: str = typer.Option(None, help="Specify human"),
model: str = typer.Option(constants.DEFAULT_MEMGPT_MODEL, help="Specify the LLM model"),
first: bool = typer.Option(False, "--first", help="Use --first to send the first message in the sequence"),
strip_ui: bool = typer.Option(False, "--strip_ui", help="Remove all the bells and whistles in CLI output (helpful for testing)"),
debug: bool = typer.Option(False, "--debug", help="Use --debug to enable debugging output"),
no_verify: bool = typer.Option(False, "--no_verify", help="Bypass message verification"),
archival_storage_faiss_path: str = typer.Option(
"",
"--archival_storage_faiss_path",
help="Specify archival storage with FAISS index to load (a folder with a .index and .json describing documents to be loaded)",
),
archival_storage_files: str = typer.Option(
"",
"--archival_storage_files",
help="Specify files to pre-load into archival memory (glob pattern)",
),
archival_storage_files_compute_embeddings: str = typer.Option(
"",
"--archival_storage_files_compute_embeddings",
help="Specify files to pre-load into archival memory (glob pattern), and compute embeddings over them",
),
archival_storage_sqldb: str = typer.Option(
"",
"--archival_storage_sqldb",
help="Specify SQL database to pre-load into archival memory",
),
use_azure_openai: bool = typer.Option(
False,
"--use_azure_openai",
help="Use Azure OpenAI (requires additional environment variables)",
), # TODO: just pass in?
):
if ctx.invoked_subcommand is not None:
return
typer.secho(
"Warning: Running legacy run command. You may need to `pip install pymemgpt[legacy] -U`. Run `memgpt run` instead.",
fg=typer.colors.RED,
bold=True,
)
if not questionary.confirm("Continue with legacy CLI?", default=False).ask():
return
main(
persona,
human,
model,
first,
debug,
no_verify,
archival_storage_faiss_path,
archival_storage_files,
archival_storage_files_compute_embeddings,
archival_storage_sqldb,
use_azure_openai,
strip_ui,
)
def main(
persona,
human,
model,
first,
debug,
no_verify,
archival_storage_faiss_path,
archival_storage_files,
archival_storage_files_compute_embeddings,
archival_storage_sqldb,
use_azure_openai,
strip_ui,
):
memgpt.interface.STRIP_UI = strip_ui
utils.DEBUG = debug
logging.getLogger().setLevel(logging.CRITICAL)
if debug:
logging.getLogger().setLevel(logging.DEBUG)
# Azure OpenAI support
if use_azure_openai:
configure_azure_support()
check_azure_embeddings()
else:
azure_vars = get_set_azure_env_vars()
if len(azure_vars) > 0:
print(f"Error: Environment variables {', '.join([x[0] for x in azure_vars])} should not be set if --use_azure_openai is False")
return
if any(
(
persona,
human,
model != constants.DEFAULT_MEMGPT_MODEL,
archival_storage_faiss_path,
archival_storage_files,
archival_storage_files_compute_embeddings,
archival_storage_sqldb,
)
):
memgpt.interface.important_message("⚙️ Using legacy command line arguments.")
model = model
if model is None:
model = constants.DEFAULT_MEMGPT_MODEL
memgpt_persona = persona
if memgpt_persona is None:
memgpt_persona = (
personas.GPT35_DEFAULT if "gpt-3.5" in model else personas.DEFAULT,
None, # represents the personas dir in pymemgpt package
)
else:
try:
personas.get_persona_text(memgpt_persona, Config.custom_personas_dir)
memgpt_persona = (memgpt_persona, Config.custom_personas_dir)
except FileNotFoundError:
personas.get_persona_text(memgpt_persona)
memgpt_persona = (memgpt_persona, None)
human_persona = human
if human_persona is None:
human_persona = (humans.DEFAULT, None)
else:
try:
humans.get_human_text(human_persona, Config.custom_humans_dir)
human_persona = (human_persona, Config.custom_humans_dir)
except FileNotFoundError:
humans.get_human_text(human_persona)
human_persona = (human_persona, None)
print(persona, model, memgpt_persona)
if archival_storage_files:
cfg = Config.legacy_flags_init(
model,
memgpt_persona,
human_persona,
load_type="folder",
archival_storage_files=archival_storage_files,
compute_embeddings=False,
)
elif archival_storage_faiss_path:
cfg = Config.legacy_flags_init(
model,
memgpt_persona,
human_persona,
load_type="folder",
archival_storage_files=archival_storage_faiss_path,
archival_storage_index=archival_storage_faiss_path,
compute_embeddings=True,
)
elif archival_storage_files_compute_embeddings:
print(model)
print(memgpt_persona)
print(human_persona)
cfg = Config.legacy_flags_init(
model,
memgpt_persona,
human_persona,
load_type="folder",
archival_storage_files=archival_storage_files_compute_embeddings,
compute_embeddings=True,
)
elif archival_storage_sqldb:
cfg = Config.legacy_flags_init(
model,
memgpt_persona,
human_persona,
load_type="sql",
archival_storage_files=archival_storage_sqldb,
compute_embeddings=False,
)
else:
cfg = Config.legacy_flags_init(
model,
memgpt_persona,
human_persona,
)
else:
cfg = Config.config_init()
memgpt.interface.important_message("Running... [exit by typing '/exit', list available commands with '/help']")
if cfg.model != constants.DEFAULT_MEMGPT_MODEL:
memgpt.interface.warning_message(
f"⛔️ Warning - you are running MemGPT with {cfg.model}, which is not officially supported (yet). Expect bugs!"
)
if cfg.index:
persistence_manager = InMemoryStateManagerWithFaiss(cfg.index, cfg.archival_database)
elif cfg.archival_storage_files:
print(f"Preloaded {len(cfg.archival_database)} chunks into archival memory.")
persistence_manager = InMemoryStateManagerWithPreloadedArchivalMemory(cfg.archival_database)
else:
persistence_manager = InMemoryStateManager()
if archival_storage_files_compute_embeddings:
memgpt.interface.important_message(
f"(legacy) To avoid computing embeddings next time, replace --archival_storage_files_compute_embeddings={archival_storage_files_compute_embeddings} with\n\t --archival_storage_faiss_path={cfg.archival_storage_index} (if your files haven't changed)."
)
# Moved defaults out of FLAGS so that we can dynamically select the default persona based on model
chosen_human = cfg.human_persona
chosen_persona = cfg.memgpt_persona
memgpt_agent = presets.use_preset(
presets.DEFAULT_PRESET,
None, # no agent config to provide
cfg.model,
personas.get_persona_text(*chosen_persona),
humans.get_human_text(*chosen_human),
memgpt.interface,
persistence_manager,
)
print_messages = memgpt.interface.print_messages
print_messages(memgpt_agent.messages)
if cfg.load_type == "sql": # TODO: move this into config.py in a clean manner
if not os.path.exists(cfg.archival_storage_files):
print(f"File {cfg.archival_storage_files} does not exist")
return
# Ingest data from file into archival storage
else:
print(f"Database found! Loading database into archival memory")
data_list = utils.read_database_as_list(cfg.archival_storage_files)
user_message = f"Your archival memory has been loaded with a SQL database called {data_list[0]}, which contains schema {data_list[1]}. Remember to refer to this first while answering any user questions!"
for row in data_list:
memgpt_agent.persistence_manager.archival_memory.insert(row)
print(f"Database loaded into archival memory.")
if cfg.agent_save_file:
load_save_file = questionary.confirm(f"Load in saved agent '{cfg.agent_save_file}'?").ask()
if load_save_file:
load(memgpt_agent, cfg.agent_save_file)
# run agent loop
run_agent_loop(memgpt_agent, first, no_verify, cfg, strip_ui, legacy=True)
def run_agent_loop(memgpt_agent, first, no_verify=False, cfg=None, strip_ui=False, legacy=False):
counter = 0
user_input = None
skip_next_user_input = False
user_message = None
USER_GOES_FIRST = first
if not USER_GOES_FIRST:
console.input("[bold cyan]Hit enter to begin (will request first MemGPT message)[/bold cyan]")
clear_line(strip_ui)
print()
multiline_input = False
while True:
if not skip_next_user_input and (counter > 0 or USER_GOES_FIRST):
# Ask for user input
user_input = questionary.text(
"Enter your message:",
multiline=multiline_input,
qmark=">",
).ask()
clear_line(strip_ui)
# Gracefully exit on Ctrl-C/D
if user_input is None:
user_input = "/exit"
user_input = user_input.rstrip()
if user_input.startswith("!"):
print(f"Commands for CLI begin with '/' not '!'")
continue
if user_input == "":
# no empty messages allowed
print("Empty input received. Try again!")
continue
# Handle CLI commands
# Commands to not get passed as input to MemGPT
if user_input.startswith("/"):
if legacy:
# legacy agent save functions (TODO: eventually remove)
if user_input.lower() == "/load" or user_input.lower().startswith("/load "):
command = user_input.strip().split()
filename = command[1] if len(command) > 1 else None
load(memgpt_agent=memgpt_agent, filename=filename)
continue
elif user_input.lower() == "/exit":
# autosave
save(memgpt_agent=memgpt_agent, cfg=cfg)
break
elif user_input.lower() == "/savechat":
filename = utils.get_local_time().replace(" ", "_").replace(":", "_")
filename = f"{filename}.pkl"
directory = os.path.join(MEMGPT_DIR, "saved_chats")
try:
if not os.path.exists(directory):
os.makedirs(directory)
with open(os.path.join(directory, filename), "wb") as f:
pickle.dump(memgpt_agent.messages, f)
print(f"Saved messages to: {filename}")
except Exception as e:
print(f"Saving chat to {filename} failed with: {e}")
continue
elif user_input.lower() == "/save":
save(memgpt_agent=memgpt_agent, cfg=cfg)
continue
else:
# updated agent save functions
if user_input.lower() == "/exit":
memgpt_agent.save()
break
elif user_input.lower() == "/save" or user_input.lower() == "/savechat":
memgpt_agent.save()
continue
if user_input.lower() == "/attach":
if legacy:
typer.secho("Error: /attach is not supported in legacy mode.", fg=typer.colors.RED, bold=True)
continue
# TODO: check if agent already has it
data_source_options = StorageConnector.list_loaded_data()
data_source = questionary.select("Select data source", choices=data_source_options).ask()
# attach new data
attach(memgpt_agent.config.name, data_source)
# update agent config
memgpt_agent.config.attach_data_source(data_source)
# reload agent with new data source
# TODO: maybe make this less ugly...
memgpt_agent.persistence_manager.archival_memory.storage = StorageConnector.get_storage_connector(
agent_config=memgpt_agent.config
)
continue
elif user_input.lower() == "/dump" or user_input.lower().startswith("/dump "):
# Check if there's an additional argument that's an integer
command = user_input.strip().split()
amount = int(command[1]) if len(command) > 1 and command[1].isdigit() else 0
if amount == 0:
memgpt.interface.print_messages(memgpt_agent.messages, dump=True)
else:
memgpt.interface.print_messages(memgpt_agent.messages[-min(amount, len(memgpt_agent.messages)) :], dump=True)
continue
elif user_input.lower() == "/dumpraw":
memgpt.interface.print_messages_raw(memgpt_agent.messages)
continue
elif user_input.lower() == "/memory":
print(f"\nDumping memory contents:\n")
print(f"{str(memgpt_agent.memory)}")
print(f"{str(memgpt_agent.persistence_manager.archival_memory)}")
print(f"{str(memgpt_agent.persistence_manager.recall_memory)}")
continue
elif user_input.lower() == "/model":
if memgpt_agent.model == "gpt-4":
memgpt_agent.model = "gpt-3.5-turbo-16k"
elif memgpt_agent.model == "gpt-3.5-turbo-16k":
memgpt_agent.model = "gpt-4"
print(f"Updated model to:\n{str(memgpt_agent.model)}")
continue
elif user_input.lower() == "/pop" or user_input.lower().startswith("/pop "):
# Check if there's an additional argument that's an integer
command = user_input.strip().split()
amount = int(command[1]) if len(command) > 1 and command[1].isdigit() else 3
print(f"Popping last {amount} messages from stack")
for _ in range(min(amount, len(memgpt_agent.messages))):
memgpt_agent.messages.pop()
continue
elif user_input.lower() == "/retry":
# TODO this needs to also modify the persistence manager
print(f"Retrying for another answer")
while len(memgpt_agent.messages) > 0:
if memgpt_agent.messages[-1].get("role") == "user":
# we want to pop up to the last user message and send it again
user_message = memgpt_agent.messages[-1].get("content")
memgpt_agent.messages.pop()
break
memgpt_agent.messages.pop()
elif user_input.lower() == "/rethink" or user_input.lower().startswith("/rethink "):
# TODO this needs to also modify the persistence manager
if len(user_input) < len("/rethink "):
print("Missing text after the command")
continue
for x in range(len(memgpt_agent.messages) - 1, 0, -1):
if memgpt_agent.messages[x].get("role") == "assistant":
text = user_input[len("/rethink ") :].strip()
memgpt_agent.messages[x].update({"content": text})
break
continue
elif user_input.lower() == "/rewrite" or user_input.lower().startswith("/rewrite "):
# TODO this needs to also modify the persistence manager
if len(user_input) < len("/rewrite "):
print("Missing text after the command")
continue
for x in range(len(memgpt_agent.messages) - 1, 0, -1):
if memgpt_agent.messages[x].get("role") == "assistant":
text = user_input[len("/rewrite ") :].strip()
args = json.loads(memgpt_agent.messages[x].get("function_call").get("arguments"))
args["message"] = text
memgpt_agent.messages[x].get("function_call").update({"arguments": json.dumps(args)})
break
continue
# No skip options
elif user_input.lower() == "/wipe":
memgpt_agent = agent.Agent(memgpt.interface)
user_message = None
elif user_input.lower() == "/heartbeat":
user_message = system.get_heartbeat()
elif user_input.lower() == "/memorywarning":
user_message = system.get_token_limit_warning()
elif user_input.lower() == "//":
multiline_input = not multiline_input
continue
elif user_input.lower() == "/" or user_input.lower() == "/help":
questionary.print("CLI commands", "bold")
for cmd, desc in USER_COMMANDS:
questionary.print(cmd, "bold")
questionary.print(f" {desc}")
continue
else:
print(f"Unrecognized command: {user_input}")
continue
else:
# If message did not begin with command prefix, pass inputs to MemGPT
# Handle user message and append to messages
user_message = system.package_user_message(user_input)
skip_next_user_input = False
def process_agent_step(user_message, no_verify):
new_messages, heartbeat_request, function_failed, token_warning = memgpt_agent.step(
user_message, first_message=False, skip_verify=no_verify
)
skip_next_user_input = False
if token_warning:
user_message = system.get_token_limit_warning()
skip_next_user_input = True
elif function_failed:
user_message = system.get_heartbeat(constants.FUNC_FAILED_HEARTBEAT_MESSAGE)
skip_next_user_input = True
elif heartbeat_request:
user_message = system.get_heartbeat(constants.REQ_HEARTBEAT_MESSAGE)
skip_next_user_input = True
return new_messages, user_message, skip_next_user_input
while True:
try:
if strip_ui:
new_messages, user_message, skip_next_user_input = process_agent_step(user_message, no_verify)
break
else:
with console.status("[bold cyan]Thinking...") as status:
new_messages, user_message, skip_next_user_input = process_agent_step(user_message, no_verify)
break
except Exception as e:
print("An exception ocurred when running agent.step(): ")
traceback.print_exc()
retry = questionary.confirm("Retry agent.step()?").ask()
if not retry:
break
counter += 1
print("Finished.")
USER_COMMANDS = [
("//", "toggle multiline input mode"),
("/exit", "exit the CLI"),
("/save", "save a checkpoint of the current agent/conversation state"),
("/load", "load a saved checkpoint"),
("/dump <count>", "view the last <count> messages (all if <count> is omitted)"),
("/memory", "print the current contents of agent memory"),
("/pop <count>", "undo <count> messages in the conversation (default is 3)"),
("/retry", "pops the last answer and tries to get another one"),
("/rethink <text>", "changes the inner thoughts of the last agent message"),
("/rewrite <text>", "changes the reply of the last agent message"),
("/heartbeat", "send a heartbeat system message to the agent"),
("/memorywarning", "send a memory warning system message to the agent"),
("/attach", "attach data source to agent"),
]