MemGPT/letta/llm_api/helpers.py
Matthew Zhou bc2c0b2482
fix: refactor Google AI Provider / helper functions and add endpoint test (#1850)
Co-authored-by: Matt Zhou <mattzhou@Matts-MacBook-Pro.local>
2024-10-08 16:55:11 -07:00

209 lines
8.8 KiB
Python

import copy
import json
import warnings
from typing import Any, List, Union
import requests
from letta.constants import OPENAI_CONTEXT_WINDOW_ERROR_SUBSTRING
from letta.schemas.enums import OptionState
from letta.schemas.openai.chat_completion_response import ChatCompletionResponse, Choice
from letta.utils import json_dumps, printd
def make_post_request(url: str, headers: dict[str, str], data: dict[str, Any]) -> dict[str, Any]:
printd(f"Sending request to {url}")
try:
# Make the POST request
response = requests.post(url, headers=headers, json=data)
printd(f"Response status code: {response.status_code}")
# Raise for 4XX/5XX HTTP errors
response.raise_for_status()
# Ensure the content is JSON before parsing
if response.headers.get("Content-Type") == "application/json":
response_data = response.json() # Convert to dict from JSON
printd(f"Response JSON: {response_data}")
else:
error_message = f"Unexpected content type returned: {response.headers.get('Content-Type')}"
printd(error_message)
raise ValueError(error_message)
# Process the response using the callback function
return response_data
except requests.exceptions.HTTPError as http_err:
# HTTP errors (4XX, 5XX)
error_message = f"HTTP error occurred: {http_err}"
if http_err.response is not None:
error_message += f" | Status code: {http_err.response.status_code}, Message: {http_err.response.text}"
printd(error_message)
raise requests.exceptions.HTTPError(error_message) from http_err
except requests.exceptions.Timeout as timeout_err:
# Handle timeout errors
error_message = f"Request timed out: {timeout_err}"
printd(error_message)
raise requests.exceptions.Timeout(error_message) from timeout_err
except requests.exceptions.RequestException as req_err:
# Non-HTTP errors (e.g., connection, SSL errors)
error_message = f"Request failed: {req_err}"
printd(error_message)
raise requests.exceptions.RequestException(error_message) from req_err
except ValueError as val_err:
# Handle content-type or non-JSON response issues
error_message = f"ValueError: {val_err}"
printd(error_message)
raise ValueError(error_message) from val_err
except Exception as e:
# Catch any other unknown exceptions
error_message = f"An unexpected error occurred: {e}"
printd(error_message)
raise Exception(error_message) from e
# TODO update to use better types
def add_inner_thoughts_to_functions(
functions: List[dict],
inner_thoughts_key: str,
inner_thoughts_description: str,
inner_thoughts_required: bool = True,
# inner_thoughts_to_front: bool = True, TODO support sorting somewhere, probably in the to_dict?
) -> List[dict]:
"""Add an inner_thoughts kwarg to every function in the provided list"""
# return copies
new_functions = []
# functions is a list of dicts in the OpenAI schema (https://platform.openai.com/docs/api-reference/chat/create)
for function_object in functions:
function_params = function_object["parameters"]["properties"]
required_params = list(function_object["parameters"]["required"])
# if the inner thoughts arg doesn't exist, add it
if inner_thoughts_key not in function_params:
function_params[inner_thoughts_key] = {
"type": "string",
"description": inner_thoughts_description,
}
# make sure it's tagged as required
new_function_object = copy.deepcopy(function_object)
if inner_thoughts_required and inner_thoughts_key not in required_params:
required_params.append(inner_thoughts_key)
new_function_object["parameters"]["required"] = required_params
new_functions.append(new_function_object)
# return a list of copies
return new_functions
def unpack_all_inner_thoughts_from_kwargs(
response: ChatCompletionResponse,
inner_thoughts_key: str,
) -> ChatCompletionResponse:
"""Strip the inner thoughts out of the tool call and put it in the message content"""
if len(response.choices) == 0:
raise ValueError(f"Unpacking inner thoughts from empty response not supported")
new_choices = []
for choice in response.choices:
new_choices.append(unpack_inner_thoughts_from_kwargs(choice, inner_thoughts_key))
# return an updated copy
new_response = response.model_copy(deep=True)
new_response.choices = new_choices
return new_response
def unpack_inner_thoughts_from_kwargs(choice: Choice, inner_thoughts_key: str) -> Choice:
message = choice.message
if message.role == "assistant" and message.tool_calls and len(message.tool_calls) >= 1:
if len(message.tool_calls) > 1:
warnings.warn(f"Unpacking inner thoughts from more than one tool call ({len(message.tool_calls)}) is not supported")
# TODO support multiple tool calls
tool_call = message.tool_calls[0]
try:
# Sadly we need to parse the JSON since args are in string format
func_args = dict(json.loads(tool_call.function.arguments))
if inner_thoughts_key in func_args:
# extract the inner thoughts
inner_thoughts = func_args.pop(inner_thoughts_key)
# replace the kwargs
new_choice = choice.model_copy(deep=True)
new_choice.message.tool_calls[0].function.arguments = json_dumps(func_args)
# also replace the message content
if new_choice.message.content is not None:
warnings.warn(f"Overwriting existing inner monologue ({new_choice.message.content}) with kwarg ({inner_thoughts})")
new_choice.message.content = inner_thoughts
return new_choice
else:
warnings.warn(f"Did not find inner thoughts in tool call: {str(tool_call)}")
except json.JSONDecodeError as e:
warnings.warn(f"Failed to strip inner thoughts from kwargs: {e}")
raise e
def is_context_overflow_error(exception: Union[requests.exceptions.RequestException, Exception]) -> bool:
"""Checks if an exception is due to context overflow (based on common OpenAI response messages)"""
from letta.utils import printd
match_string = OPENAI_CONTEXT_WINDOW_ERROR_SUBSTRING
# Backwards compatibility with openai python package/client v0.28 (pre-v1 client migration)
if match_string in str(exception):
printd(f"Found '{match_string}' in str(exception)={(str(exception))}")
return True
# Based on python requests + OpenAI REST API (/v1)
elif isinstance(exception, requests.exceptions.HTTPError):
if exception.response is not None and "application/json" in exception.response.headers.get("Content-Type", ""):
try:
error_details = exception.response.json()
if "error" not in error_details:
printd(f"HTTPError occurred, but couldn't find error field: {error_details}")
return False
else:
error_details = error_details["error"]
# Check for the specific error code
if error_details.get("code") == "context_length_exceeded":
printd(f"HTTPError occurred, caught error code {error_details.get('code')}")
return True
# Soft-check for "maximum context length" inside of the message
elif error_details.get("message") and "maximum context length" in error_details.get("message"):
printd(f"HTTPError occurred, found '{match_string}' in error message contents ({error_details})")
return True
else:
printd(f"HTTPError occurred, but unknown error message: {error_details}")
return False
except ValueError:
# JSON decoding failed
printd(f"HTTPError occurred ({exception}), but no JSON error message.")
# Generic fail
else:
return False
def derive_inner_thoughts_in_kwargs(inner_thoughts_in_kwargs_option: OptionState, model: str):
if inner_thoughts_in_kwargs_option == OptionState.DEFAULT:
# model that are known to not use `content` fields on tool calls
inner_thoughts_in_kwargs = "gpt-4o" in model or "gpt-4-turbo" in model or "gpt-3.5-turbo" in model
else:
inner_thoughts_in_kwargs = True if inner_thoughts_in_kwargs_option == OptionState.YES else False
if not isinstance(inner_thoughts_in_kwargs, bool):
warnings.warn(f"Bad type detected: {type(inner_thoughts_in_kwargs)}")
inner_thoughts_in_kwargs = bool(inner_thoughts_in_kwargs)
return inner_thoughts_in_kwargs