MemGPT/letta/agents/base_agent.py
cthomas c0efe8ad0c
chore: bump version 0.7.21 (#2653)
Co-authored-by: Andy Li <55300002+cliandy@users.noreply.github.com>
Co-authored-by: Kevin Lin <klin5061@gmail.com>
Co-authored-by: Sarah Wooders <sarahwooders@gmail.com>
Co-authored-by: jnjpng <jin@letta.com>
Co-authored-by: Matthew Zhou <mattzh1314@gmail.com>
2025-05-21 16:33:29 -07:00

129 lines
5.3 KiB
Python

from abc import ABC, abstractmethod
from typing import Any, AsyncGenerator, List, Optional, Union
import openai
from letta.helpers.datetime_helpers import get_utc_time
from letta.log import get_logger
from letta.schemas.agent import AgentState
from letta.schemas.enums import MessageStreamStatus
from letta.schemas.letta_message import LegacyLettaMessage, LettaMessage
from letta.schemas.letta_message_content import TextContent
from letta.schemas.letta_response import LettaResponse
from letta.schemas.message import Message, MessageCreate, MessageUpdate
from letta.schemas.user import User
from letta.services.agent_manager import AgentManager
from letta.services.helpers.agent_manager_helper import compile_system_message
from letta.services.message_manager import MessageManager
from letta.utils import united_diff
logger = get_logger(__name__)
class BaseAgent(ABC):
"""
Abstract base class for AI agents, handling message management, tool execution,
and context tracking.
"""
def __init__(
self,
agent_id: str,
# TODO: Make required once client refactor hits
openai_client: Optional[openai.AsyncClient],
message_manager: MessageManager,
agent_manager: AgentManager,
actor: User,
):
self.agent_id = agent_id
self.openai_client = openai_client
self.message_manager = message_manager
self.agent_manager = agent_manager
self.actor = actor
@abstractmethod
async def step(self, input_messages: List[MessageCreate], max_steps: int = 10) -> LettaResponse:
"""
Main execution loop for the agent.
"""
raise NotImplementedError
@abstractmethod
async def step_stream(
self, input_messages: List[MessageCreate], max_steps: int = 10
) -> AsyncGenerator[Union[LettaMessage, LegacyLettaMessage, MessageStreamStatus], None]:
"""
Main streaming execution loop for the agent.
"""
raise NotImplementedError
def pre_process_input_message(self, input_messages: List[MessageCreate]) -> Any:
"""
Pre-process function to run on the input_message.
"""
def get_content(message: MessageCreate) -> str:
if isinstance(message.content, str):
return message.content
elif message.content and len(message.content) == 1 and isinstance(message.content[0], TextContent):
return message.content[0].text
else:
return ""
return [{"role": input_message.role.value, "content": get_content(input_message)} for input_message in input_messages]
async def _rebuild_memory_async(
self,
in_context_messages: List[Message],
agent_state: AgentState,
num_messages: int | None = None, # storing these calculations is specific to the voice agent
num_archival_memories: int | None = None,
) -> List[Message]:
"""
Async version of function above. For now before breaking up components, changes should be made in both places.
"""
try:
# [DB Call] loading blocks (modifies: agent_state.memory.blocks)
await self.agent_manager.refresh_memory_async(agent_state=agent_state, actor=self.actor)
# TODO: This is a pretty brittle pattern established all over our code, need to get rid of this
curr_system_message = in_context_messages[0]
curr_memory_str = agent_state.memory.compile()
curr_system_message_text = curr_system_message.content[0].text
if curr_memory_str in curr_system_message_text:
logger.debug(
f"Memory hasn't changed for agent id={agent_state.id} and actor=({self.actor.id}, {self.actor.name}), skipping system prompt rebuild"
)
return in_context_messages
memory_edit_timestamp = get_utc_time()
# [DB Call] size of messages and archival memories
# todo: blocking for now
num_messages = num_messages or self.message_manager.size(actor=self.actor, agent_id=agent_state.id)
num_archival_memories = num_archival_memories or self.passage_manager.size(actor=self.actor, agent_id=agent_state.id)
new_system_message_str = compile_system_message(
system_prompt=agent_state.system,
in_context_memory=agent_state.memory,
in_context_memory_last_edit=memory_edit_timestamp,
previous_message_count=num_messages,
archival_memory_size=num_archival_memories,
)
diff = united_diff(curr_system_message_text, new_system_message_str)
if len(diff) > 0:
logger.debug(f"Rebuilding system with new memory...\nDiff:\n{diff}")
# [DB Call] Update Messages
new_system_message = await self.message_manager.update_message_by_id_async(
curr_system_message.id, message_update=MessageUpdate(content=new_system_message_str), actor=self.actor
)
return [new_system_message] + in_context_messages[1:]
else:
return in_context_messages
except:
logger.exception(f"Failed to rebuild memory for agent id={agent_state.id} and actor=({self.actor.id}, {self.actor.name})")
raise