mirror of
https://github.com/cpacker/MemGPT.git
synced 2025-06-03 04:30:22 +00:00

Co-authored-by: Andy Li <55300002+cliandy@users.noreply.github.com> Co-authored-by: Kevin Lin <klin5061@gmail.com> Co-authored-by: Sarah Wooders <sarahwooders@gmail.com> Co-authored-by: jnjpng <jin@letta.com> Co-authored-by: Matthew Zhou <mattzh1314@gmail.com>
129 lines
5.3 KiB
Python
129 lines
5.3 KiB
Python
from abc import ABC, abstractmethod
|
|
from typing import Any, AsyncGenerator, List, Optional, Union
|
|
|
|
import openai
|
|
|
|
from letta.helpers.datetime_helpers import get_utc_time
|
|
from letta.log import get_logger
|
|
from letta.schemas.agent import AgentState
|
|
from letta.schemas.enums import MessageStreamStatus
|
|
from letta.schemas.letta_message import LegacyLettaMessage, LettaMessage
|
|
from letta.schemas.letta_message_content import TextContent
|
|
from letta.schemas.letta_response import LettaResponse
|
|
from letta.schemas.message import Message, MessageCreate, MessageUpdate
|
|
from letta.schemas.user import User
|
|
from letta.services.agent_manager import AgentManager
|
|
from letta.services.helpers.agent_manager_helper import compile_system_message
|
|
from letta.services.message_manager import MessageManager
|
|
from letta.utils import united_diff
|
|
|
|
logger = get_logger(__name__)
|
|
|
|
|
|
class BaseAgent(ABC):
|
|
"""
|
|
Abstract base class for AI agents, handling message management, tool execution,
|
|
and context tracking.
|
|
"""
|
|
|
|
def __init__(
|
|
self,
|
|
agent_id: str,
|
|
# TODO: Make required once client refactor hits
|
|
openai_client: Optional[openai.AsyncClient],
|
|
message_manager: MessageManager,
|
|
agent_manager: AgentManager,
|
|
actor: User,
|
|
):
|
|
self.agent_id = agent_id
|
|
self.openai_client = openai_client
|
|
self.message_manager = message_manager
|
|
self.agent_manager = agent_manager
|
|
self.actor = actor
|
|
|
|
@abstractmethod
|
|
async def step(self, input_messages: List[MessageCreate], max_steps: int = 10) -> LettaResponse:
|
|
"""
|
|
Main execution loop for the agent.
|
|
"""
|
|
raise NotImplementedError
|
|
|
|
@abstractmethod
|
|
async def step_stream(
|
|
self, input_messages: List[MessageCreate], max_steps: int = 10
|
|
) -> AsyncGenerator[Union[LettaMessage, LegacyLettaMessage, MessageStreamStatus], None]:
|
|
"""
|
|
Main streaming execution loop for the agent.
|
|
"""
|
|
raise NotImplementedError
|
|
|
|
def pre_process_input_message(self, input_messages: List[MessageCreate]) -> Any:
|
|
"""
|
|
Pre-process function to run on the input_message.
|
|
"""
|
|
|
|
def get_content(message: MessageCreate) -> str:
|
|
if isinstance(message.content, str):
|
|
return message.content
|
|
elif message.content and len(message.content) == 1 and isinstance(message.content[0], TextContent):
|
|
return message.content[0].text
|
|
else:
|
|
return ""
|
|
|
|
return [{"role": input_message.role.value, "content": get_content(input_message)} for input_message in input_messages]
|
|
|
|
async def _rebuild_memory_async(
|
|
self,
|
|
in_context_messages: List[Message],
|
|
agent_state: AgentState,
|
|
num_messages: int | None = None, # storing these calculations is specific to the voice agent
|
|
num_archival_memories: int | None = None,
|
|
) -> List[Message]:
|
|
"""
|
|
Async version of function above. For now before breaking up components, changes should be made in both places.
|
|
"""
|
|
try:
|
|
# [DB Call] loading blocks (modifies: agent_state.memory.blocks)
|
|
await self.agent_manager.refresh_memory_async(agent_state=agent_state, actor=self.actor)
|
|
|
|
# TODO: This is a pretty brittle pattern established all over our code, need to get rid of this
|
|
curr_system_message = in_context_messages[0]
|
|
curr_memory_str = agent_state.memory.compile()
|
|
curr_system_message_text = curr_system_message.content[0].text
|
|
if curr_memory_str in curr_system_message_text:
|
|
logger.debug(
|
|
f"Memory hasn't changed for agent id={agent_state.id} and actor=({self.actor.id}, {self.actor.name}), skipping system prompt rebuild"
|
|
)
|
|
return in_context_messages
|
|
|
|
memory_edit_timestamp = get_utc_time()
|
|
|
|
# [DB Call] size of messages and archival memories
|
|
# todo: blocking for now
|
|
num_messages = num_messages or self.message_manager.size(actor=self.actor, agent_id=agent_state.id)
|
|
num_archival_memories = num_archival_memories or self.passage_manager.size(actor=self.actor, agent_id=agent_state.id)
|
|
|
|
new_system_message_str = compile_system_message(
|
|
system_prompt=agent_state.system,
|
|
in_context_memory=agent_state.memory,
|
|
in_context_memory_last_edit=memory_edit_timestamp,
|
|
previous_message_count=num_messages,
|
|
archival_memory_size=num_archival_memories,
|
|
)
|
|
|
|
diff = united_diff(curr_system_message_text, new_system_message_str)
|
|
if len(diff) > 0:
|
|
logger.debug(f"Rebuilding system with new memory...\nDiff:\n{diff}")
|
|
|
|
# [DB Call] Update Messages
|
|
new_system_message = await self.message_manager.update_message_by_id_async(
|
|
curr_system_message.id, message_update=MessageUpdate(content=new_system_message_str), actor=self.actor
|
|
)
|
|
return [new_system_message] + in_context_messages[1:]
|
|
|
|
else:
|
|
return in_context_messages
|
|
except:
|
|
logger.exception(f"Failed to rebuild memory for agent id={agent_state.id} and actor=({self.actor.id}, {self.actor.name})")
|
|
raise
|