MemGPT/letta/interfaces/anthropic_streaming_interface.py
cthomas c0efe8ad0c
chore: bump version 0.7.21 (#2653)
Co-authored-by: Andy Li <55300002+cliandy@users.noreply.github.com>
Co-authored-by: Kevin Lin <klin5061@gmail.com>
Co-authored-by: Sarah Wooders <sarahwooders@gmail.com>
Co-authored-by: jnjpng <jin@letta.com>
Co-authored-by: Matthew Zhou <mattzh1314@gmail.com>
2025-05-21 16:33:29 -07:00

397 lines
21 KiB
Python

import json
from datetime import datetime, timezone
from enum import Enum
from typing import AsyncGenerator, List, Union
from anthropic import AsyncStream
from anthropic.types.beta import (
BetaInputJSONDelta,
BetaRawContentBlockDeltaEvent,
BetaRawContentBlockStartEvent,
BetaRawContentBlockStopEvent,
BetaRawMessageDeltaEvent,
BetaRawMessageStartEvent,
BetaRawMessageStopEvent,
BetaRawMessageStreamEvent,
BetaRedactedThinkingBlock,
BetaSignatureDelta,
BetaTextBlock,
BetaTextDelta,
BetaThinkingBlock,
BetaThinkingDelta,
BetaToolUseBlock,
)
from letta.constants import DEFAULT_MESSAGE_TOOL, DEFAULT_MESSAGE_TOOL_KWARG
from letta.local_llm.constants import INNER_THOUGHTS_KWARG
from letta.log import get_logger
from letta.schemas.letta_message import (
AssistantMessage,
HiddenReasoningMessage,
LettaMessage,
ReasoningMessage,
ToolCallDelta,
ToolCallMessage,
)
from letta.schemas.letta_message_content import ReasoningContent, RedactedReasoningContent, TextContent
from letta.schemas.message import Message
from letta.schemas.openai.chat_completion_response import FunctionCall, ToolCall
from letta.server.rest_api.json_parser import JSONParser, PydanticJSONParser
logger = get_logger(__name__)
# TODO: These modes aren't used right now - but can be useful we do multiple sequential tool calling within one Claude message
class EventMode(Enum):
TEXT = "TEXT"
TOOL_USE = "TOOL_USE"
THINKING = "THINKING"
REDACTED_THINKING = "REDACTED_THINKING"
class AnthropicStreamingInterface:
"""
Encapsulates the logic for streaming responses from Anthropic.
This class handles parsing of partial tokens, pre-execution messages,
and detection of tool call events.
"""
def __init__(self, use_assistant_message: bool = False, put_inner_thoughts_in_kwarg: bool = False):
self.json_parser: JSONParser = PydanticJSONParser()
self.use_assistant_message = use_assistant_message
# Premake IDs for database writes
self.letta_assistant_message_id = Message.generate_id()
self.letta_tool_message_id = Message.generate_id()
self.anthropic_mode = None
self.message_id = None
self.accumulated_inner_thoughts = []
self.tool_call_id = None
self.tool_call_name = None
self.accumulated_tool_call_args = ""
self.previous_parse = {}
# usage trackers
self.input_tokens = 0
self.output_tokens = 0
self.model = None
# reasoning object trackers
self.reasoning_messages = []
# Buffer to hold tool call messages until inner thoughts are complete
self.tool_call_buffer = []
self.inner_thoughts_complete = False
self.put_inner_thoughts_in_kwarg = put_inner_thoughts_in_kwarg
# Buffer to handle partial XML tags across chunks
self.partial_tag_buffer = ""
def get_tool_call_object(self) -> ToolCall:
"""Useful for agent loop"""
# hack for tool rules
tool_input = json.loads(self.accumulated_tool_call_args)
if "id" in tool_input and tool_input["id"].startswith("toolu_") and "function" in tool_input:
arguments = str(json.dumps(tool_input["function"]["arguments"], indent=2))
else:
arguments = self.accumulated_tool_call_args
return ToolCall(id=self.tool_call_id, function=FunctionCall(arguments=arguments, name=self.tool_call_name))
def _check_inner_thoughts_complete(self, combined_args: str) -> bool:
"""
Check if inner thoughts are complete in the current tool call arguments
by looking for a closing quote after the inner_thoughts field
"""
try:
if not self.put_inner_thoughts_in_kwarg:
# None of the things should have inner thoughts in kwargs
return True
else:
parsed = self.json_parser.parse(combined_args)
# TODO: This will break on tools with 0 input
return len(parsed.keys()) > 1 and INNER_THOUGHTS_KWARG in parsed.keys()
except Exception as e:
logger.error("Error checking inner thoughts: %s", e)
raise
async def process(self, stream: AsyncStream[BetaRawMessageStreamEvent]) -> AsyncGenerator[LettaMessage, None]:
prev_message_type = None
message_index = 0
try:
async with stream:
async for event in stream:
# TODO: Support BetaThinkingBlock, BetaRedactedThinkingBlock
if isinstance(event, BetaRawContentBlockStartEvent):
content = event.content_block
if isinstance(content, BetaTextBlock):
self.anthropic_mode = EventMode.TEXT
# TODO: Can capture citations, etc.
elif isinstance(content, BetaToolUseBlock):
self.anthropic_mode = EventMode.TOOL_USE
self.tool_call_id = content.id
self.tool_call_name = content.name
self.inner_thoughts_complete = False
if not self.use_assistant_message:
# Buffer the initial tool call message instead of yielding immediately
tool_call_msg = ToolCallMessage(
id=self.letta_tool_message_id,
tool_call=ToolCallDelta(name=self.tool_call_name, tool_call_id=self.tool_call_id),
date=datetime.now(timezone.utc).isoformat(),
)
self.tool_call_buffer.append(tool_call_msg)
elif isinstance(content, BetaThinkingBlock):
self.anthropic_mode = EventMode.THINKING
# TODO: Can capture signature, etc.
elif isinstance(content, BetaRedactedThinkingBlock):
self.anthropic_mode = EventMode.REDACTED_THINKING
if prev_message_type and prev_message_type != "hidden_reasoning_message":
message_index += 1
hidden_reasoning_message = HiddenReasoningMessage(
id=self.letta_assistant_message_id,
state="redacted",
hidden_reasoning=content.data,
date=datetime.now(timezone.utc).isoformat(),
otid=Message.generate_otid_from_id(self.letta_assistant_message_id, message_index),
)
self.reasoning_messages.append(hidden_reasoning_message)
prev_message_type = hidden_reasoning_message.message_type
yield hidden_reasoning_message
elif isinstance(event, BetaRawContentBlockDeltaEvent):
delta = event.delta
if isinstance(delta, BetaTextDelta):
# Safety check
if not self.anthropic_mode == EventMode.TEXT:
raise RuntimeError(
f"Streaming integrity failed - received BetaTextDelta object while not in TEXT EventMode: {delta}"
)
# Combine buffer with current text to handle tags split across chunks
combined_text = self.partial_tag_buffer + delta.text
# Remove all occurrences of </thinking> tag
cleaned_text = combined_text.replace("</thinking>", "")
# Extract just the new content (without the buffer part)
if len(self.partial_tag_buffer) <= len(cleaned_text):
delta.text = cleaned_text[len(self.partial_tag_buffer) :]
else:
# Edge case: the tag was removed and now the text is shorter than the buffer
delta.text = ""
# Store the last 10 characters (or all if less than 10) for the next chunk
# This is enough to catch "</thinking" which is 10 characters
self.partial_tag_buffer = combined_text[-10:] if len(combined_text) > 10 else combined_text
self.accumulated_inner_thoughts.append(delta.text)
if prev_message_type and prev_message_type != "reasoning_message":
message_index += 1
reasoning_message = ReasoningMessage(
id=self.letta_assistant_message_id,
reasoning=self.accumulated_inner_thoughts[-1],
date=datetime.now(timezone.utc).isoformat(),
otid=Message.generate_otid_from_id(self.letta_assistant_message_id, message_index),
)
self.reasoning_messages.append(reasoning_message)
prev_message_type = reasoning_message.message_type
yield reasoning_message
elif isinstance(delta, BetaInputJSONDelta):
if not self.anthropic_mode == EventMode.TOOL_USE:
raise RuntimeError(
f"Streaming integrity failed - received BetaInputJSONDelta object while not in TOOL_USE EventMode: {delta}"
)
self.accumulated_tool_call_args += delta.partial_json
current_parsed = self.json_parser.parse(self.accumulated_tool_call_args)
# Start detecting a difference in inner thoughts
previous_inner_thoughts = self.previous_parse.get(INNER_THOUGHTS_KWARG, "")
current_inner_thoughts = current_parsed.get(INNER_THOUGHTS_KWARG, "")
inner_thoughts_diff = current_inner_thoughts[len(previous_inner_thoughts) :]
if inner_thoughts_diff:
if prev_message_type and prev_message_type != "reasoning_message":
message_index += 1
reasoning_message = ReasoningMessage(
id=self.letta_assistant_message_id,
reasoning=inner_thoughts_diff,
date=datetime.now(timezone.utc).isoformat(),
otid=Message.generate_otid_from_id(self.letta_assistant_message_id, message_index),
)
self.reasoning_messages.append(reasoning_message)
prev_message_type = reasoning_message.message_type
yield reasoning_message
# Check if inner thoughts are complete - if so, flush the buffer
if not self.inner_thoughts_complete and self._check_inner_thoughts_complete(self.accumulated_tool_call_args):
self.inner_thoughts_complete = True
# Flush all buffered tool call messages
if len(self.tool_call_buffer) > 0:
if prev_message_type and prev_message_type != "tool_call_message":
message_index += 1
for buffered_msg in self.tool_call_buffer:
buffered_msg.otid = Message.generate_otid_from_id(self.letta_tool_message_id, message_index)
prev_message_type = buffered_msg.message_type
yield buffered_msg
self.tool_call_buffer = []
# Start detecting special case of "send_message"
if self.tool_call_name == DEFAULT_MESSAGE_TOOL and self.use_assistant_message:
previous_send_message = self.previous_parse.get(DEFAULT_MESSAGE_TOOL_KWARG, "")
current_send_message = current_parsed.get(DEFAULT_MESSAGE_TOOL_KWARG, "")
send_message_diff = current_send_message[len(previous_send_message) :]
# Only stream out if it's not an empty string
if send_message_diff:
if prev_message_type and prev_message_type != "assistant_message":
message_index += 1
assistant_msg = AssistantMessage(
id=self.letta_assistant_message_id,
content=[TextContent(text=send_message_diff)],
date=datetime.now(timezone.utc).isoformat(),
otid=Message.generate_otid_from_id(self.letta_assistant_message_id, message_index),
)
prev_message_type = assistant_msg.message_type
yield assistant_msg
else:
# Otherwise, it is a normal tool call - buffer or yield based on inner thoughts status
tool_call_msg = ToolCallMessage(
id=self.letta_tool_message_id,
tool_call=ToolCallDelta(arguments=delta.partial_json),
date=datetime.now(timezone.utc).isoformat(),
)
if self.inner_thoughts_complete:
if prev_message_type and prev_message_type != "tool_call_message":
message_index += 1
tool_call_msg.otid = Message.generate_otid_from_id(self.letta_tool_message_id, message_index)
prev_message_type = tool_call_msg.message_type
yield tool_call_msg
else:
self.tool_call_buffer.append(tool_call_msg)
# Set previous parse
self.previous_parse = current_parsed
elif isinstance(delta, BetaThinkingDelta):
# Safety check
if not self.anthropic_mode == EventMode.THINKING:
raise RuntimeError(
f"Streaming integrity failed - received BetaThinkingBlock object while not in THINKING EventMode: {delta}"
)
if prev_message_type and prev_message_type != "reasoning_message":
message_index += 1
reasoning_message = ReasoningMessage(
id=self.letta_assistant_message_id,
source="reasoner_model",
reasoning=delta.thinking,
date=datetime.now(timezone.utc).isoformat(),
otid=Message.generate_otid_from_id(self.letta_assistant_message_id, message_index),
)
self.reasoning_messages.append(reasoning_message)
prev_message_type = reasoning_message.message_type
yield reasoning_message
elif isinstance(delta, BetaSignatureDelta):
# Safety check
if not self.anthropic_mode == EventMode.THINKING:
raise RuntimeError(
f"Streaming integrity failed - received BetaSignatureDelta object while not in THINKING EventMode: {delta}"
)
if prev_message_type and prev_message_type != "reasoning_message":
message_index += 1
reasoning_message = ReasoningMessage(
id=self.letta_assistant_message_id,
source="reasoner_model",
reasoning="",
date=datetime.now(timezone.utc).isoformat(),
signature=delta.signature,
otid=Message.generate_otid_from_id(self.letta_assistant_message_id, message_index),
)
self.reasoning_messages.append(reasoning_message)
prev_message_type = reasoning_message.message_type
yield reasoning_message
elif isinstance(event, BetaRawMessageStartEvent):
self.message_id = event.message.id
self.input_tokens += event.message.usage.input_tokens
self.output_tokens += event.message.usage.output_tokens
self.model = event.message.model
elif isinstance(event, BetaRawMessageDeltaEvent):
self.output_tokens += event.usage.output_tokens
elif isinstance(event, BetaRawMessageStopEvent):
# Don't do anything here! We don't want to stop the stream.
pass
elif isinstance(event, BetaRawContentBlockStopEvent):
# If we're exiting a tool use block and there are still buffered messages,
# we should flush them now
if self.anthropic_mode == EventMode.TOOL_USE and self.tool_call_buffer:
for buffered_msg in self.tool_call_buffer:
yield buffered_msg
self.tool_call_buffer = []
self.anthropic_mode = None
except Exception as e:
logger.error("Error processing stream: %s", e)
raise
finally:
logger.info("AnthropicStreamingInterface: Stream processing complete.")
def get_reasoning_content(self) -> List[Union[TextContent, ReasoningContent, RedactedReasoningContent]]:
def _process_group(
group: List[Union[ReasoningMessage, HiddenReasoningMessage]], group_type: str
) -> Union[TextContent, ReasoningContent, RedactedReasoningContent]:
if group_type == "reasoning":
reasoning_text = "".join(chunk.reasoning for chunk in group)
is_native = any(chunk.source == "reasoner_model" for chunk in group)
signature = next((chunk.signature for chunk in group if chunk.signature is not None), None)
if is_native:
return ReasoningContent(is_native=is_native, reasoning=reasoning_text, signature=signature)
else:
return TextContent(text=reasoning_text)
elif group_type == "redacted":
redacted_text = "".join(chunk.hidden_reasoning for chunk in group if chunk.hidden_reasoning is not None)
return RedactedReasoningContent(data=redacted_text)
else:
raise ValueError("Unexpected group type")
merged = []
current_group = []
current_group_type = None # "reasoning" or "redacted"
for msg in self.reasoning_messages:
# Determine the type of the current message
if isinstance(msg, HiddenReasoningMessage):
msg_type = "redacted"
elif isinstance(msg, ReasoningMessage):
msg_type = "reasoning"
else:
raise ValueError("Unexpected message type")
# Initialize group type if not set
if current_group_type is None:
current_group_type = msg_type
# If the type changes, process the current group
if msg_type != current_group_type:
merged.append(_process_group(current_group, current_group_type))
current_group = []
current_group_type = msg_type
current_group.append(msg)
# Process the final group, if any.
if current_group:
merged.append(_process_group(current_group, current_group_type))
# Strip out XML from any text content fields
for content in merged:
if isinstance(content, TextContent) and content.text.endswith("</thinking>"):
cutoff = len(content.text) - len("</thinking>")
content.text = content.text[:cutoff]
return merged