MemGPT/letta/interfaces/openai_streaming_interface.py
cthomas c0efe8ad0c
chore: bump version 0.7.21 (#2653)
Co-authored-by: Andy Li <55300002+cliandy@users.noreply.github.com>
Co-authored-by: Kevin Lin <klin5061@gmail.com>
Co-authored-by: Sarah Wooders <sarahwooders@gmail.com>
Co-authored-by: jnjpng <jin@letta.com>
Co-authored-by: Matthew Zhou <mattzh1314@gmail.com>
2025-05-21 16:33:29 -07:00

311 lines
20 KiB
Python

from datetime import datetime, timezone
from typing import AsyncGenerator, List, Optional
from openai import AsyncStream
from openai.types.chat.chat_completion_chunk import ChatCompletionChunk
from letta.constants import DEFAULT_MESSAGE_TOOL, DEFAULT_MESSAGE_TOOL_KWARG
from letta.schemas.letta_message import AssistantMessage, LettaMessage, ReasoningMessage, ToolCallDelta, ToolCallMessage
from letta.schemas.letta_message_content import TextContent
from letta.schemas.message import Message
from letta.schemas.openai.chat_completion_response import FunctionCall, ToolCall
from letta.server.rest_api.json_parser import OptimisticJSONParser
from letta.streaming_utils import JSONInnerThoughtsExtractor
class OpenAIStreamingInterface:
"""
Encapsulates the logic for streaming responses from OpenAI.
This class handles parsing of partial tokens, pre-execution messages,
and detection of tool call events.
"""
def __init__(self, use_assistant_message: bool = False, put_inner_thoughts_in_kwarg: bool = False):
self.use_assistant_message = use_assistant_message
self.assistant_message_tool_name = DEFAULT_MESSAGE_TOOL
self.assistant_message_tool_kwarg = DEFAULT_MESSAGE_TOOL_KWARG
self.optimistic_json_parser: OptimisticJSONParser = OptimisticJSONParser()
self.function_args_reader = JSONInnerThoughtsExtractor(wait_for_first_key=True) # TODO: pass in kward
self.function_name_buffer = None
self.function_args_buffer = None
self.function_id_buffer = None
self.last_flushed_function_name = None
# Buffer to hold function arguments until inner thoughts are complete
self.current_function_arguments = ""
self.current_json_parse_result = {}
# Premake IDs for database writes
self.letta_assistant_message_id = Message.generate_id()
self.letta_tool_message_id = Message.generate_id()
self.message_id = None
self.model = None
# token counters
self.input_tokens = 0
self.output_tokens = 0
self.content_buffer: List[str] = []
self.tool_call_name: Optional[str] = None
self.tool_call_id: Optional[str] = None
self.reasoning_messages = []
def get_reasoning_content(self) -> List[TextContent]:
content = "".join(self.reasoning_messages)
return [TextContent(text=content)]
def get_tool_call_object(self) -> ToolCall:
"""Useful for agent loop"""
return ToolCall(
id=self.letta_tool_message_id,
function=FunctionCall(arguments=self.current_function_arguments, name=self.last_flushed_function_name),
)
async def process(self, stream: AsyncStream[ChatCompletionChunk]) -> AsyncGenerator[LettaMessage, None]:
"""
Iterates over the OpenAI stream, yielding SSE events.
It also collects tokens and detects if a tool call is triggered.
"""
async with stream:
prev_message_type = None
message_index = 0
async for chunk in stream:
if not self.model or not self.message_id:
self.model = chunk.model
self.message_id = chunk.id
# track usage
if chunk.usage:
self.input_tokens += chunk.usage.prompt_tokens
self.output_tokens += chunk.usage.completion_tokens
if chunk.choices:
choice = chunk.choices[0]
message_delta = choice.delta
if message_delta.tool_calls is not None and len(message_delta.tool_calls) > 0:
tool_call = message_delta.tool_calls[0]
if tool_call.function.name:
# If we're waiting for the first key, then we should hold back the name
# ie add it to a buffer instead of returning it as a chunk
if self.function_name_buffer is None:
self.function_name_buffer = tool_call.function.name
else:
self.function_name_buffer += tool_call.function.name
if tool_call.id:
# Buffer until next time
if self.function_id_buffer is None:
self.function_id_buffer = tool_call.id
else:
self.function_id_buffer += tool_call.id
if tool_call.function.arguments:
# updates_main_json, updates_inner_thoughts = self.function_args_reader.process_fragment(tool_call.function.arguments)
self.current_function_arguments += tool_call.function.arguments
updates_main_json, updates_inner_thoughts = self.function_args_reader.process_fragment(
tool_call.function.arguments
)
# If we have inner thoughts, we should output them as a chunk
if updates_inner_thoughts:
if prev_message_type and prev_message_type != "reasoning_message":
message_index += 1
self.reasoning_messages.append(updates_inner_thoughts)
reasoning_message = ReasoningMessage(
id=self.letta_tool_message_id,
date=datetime.now(timezone.utc),
reasoning=updates_inner_thoughts,
# name=name,
otid=Message.generate_otid_from_id(self.letta_tool_message_id, message_index),
)
prev_message_type = reasoning_message.message_type
yield reasoning_message
# Additionally inner thoughts may stream back with a chunk of main JSON
# In that case, since we can only return a chunk at a time, we should buffer it
if updates_main_json:
if self.function_args_buffer is None:
self.function_args_buffer = updates_main_json
else:
self.function_args_buffer += updates_main_json
# If we have main_json, we should output a ToolCallMessage
elif updates_main_json:
# If there's something in the function_name buffer, we should release it first
# NOTE: we could output it as part of a chunk that has both name and args,
# however the frontend may expect name first, then args, so to be
# safe we'll output name first in a separate chunk
if self.function_name_buffer:
# use_assisitant_message means that we should also not release main_json raw, and instead should only release the contents of "message": "..."
if self.use_assistant_message and self.function_name_buffer == self.assistant_message_tool_name:
# Store the ID of the tool call so allow skipping the corresponding response
if self.function_id_buffer:
self.prev_assistant_message_id = self.function_id_buffer
else:
if prev_message_type and prev_message_type != "tool_call_message":
message_index += 1
self.tool_call_name = str(self.function_name_buffer)
tool_call_msg = ToolCallMessage(
id=self.letta_tool_message_id,
date=datetime.now(timezone.utc),
tool_call=ToolCallDelta(
name=self.function_name_buffer,
arguments=None,
tool_call_id=self.function_id_buffer,
),
otid=Message.generate_otid_from_id(self.letta_tool_message_id, message_index),
)
prev_message_type = tool_call_msg.message_type
yield tool_call_msg
# Record what the last function name we flushed was
self.last_flushed_function_name = self.function_name_buffer
# Clear the buffer
self.function_name_buffer = None
self.function_id_buffer = None
# Since we're clearing the name buffer, we should store
# any updates to the arguments inside a separate buffer
# Add any main_json updates to the arguments buffer
if self.function_args_buffer is None:
self.function_args_buffer = updates_main_json
else:
self.function_args_buffer += updates_main_json
# If there was nothing in the name buffer, we can proceed to
# output the arguments chunk as a ToolCallMessage
else:
# use_assisitant_message means that we should also not release main_json raw, and instead should only release the contents of "message": "..."
if self.use_assistant_message and (
self.last_flushed_function_name is not None
and self.last_flushed_function_name == self.assistant_message_tool_name
):
# do an additional parse on the updates_main_json
if self.function_args_buffer:
updates_main_json = self.function_args_buffer + updates_main_json
self.function_args_buffer = None
# Pretty gross hardcoding that assumes that if we're toggling into the keywords, we have the full prefix
match_str = '{"' + self.assistant_message_tool_kwarg + '":"'
if updates_main_json == match_str:
updates_main_json = None
else:
# Some hardcoding to strip off the trailing "}"
if updates_main_json in ["}", '"}']:
updates_main_json = None
if updates_main_json and len(updates_main_json) > 0 and updates_main_json[-1:] == '"':
updates_main_json = updates_main_json[:-1]
if not updates_main_json:
# early exit to turn into content mode
continue
# There may be a buffer from a previous chunk, for example
# if the previous chunk had arguments but we needed to flush name
if self.function_args_buffer:
# In this case, we should release the buffer + new data at once
combined_chunk = self.function_args_buffer + updates_main_json
if prev_message_type and prev_message_type != "assistant_message":
message_index += 1
assistant_message = AssistantMessage(
id=self.letta_assistant_message_id,
date=datetime.now(timezone.utc),
content=combined_chunk,
otid=Message.generate_otid_from_id(self.letta_assistant_message_id, message_index),
)
prev_message_type = assistant_message.message_type
yield assistant_message
# Store the ID of the tool call so allow skipping the corresponding response
if self.function_id_buffer:
self.prev_assistant_message_id = self.function_id_buffer
# clear buffer
self.function_args_buffer = None
self.function_id_buffer = None
else:
# If there's no buffer to clear, just output a new chunk with new data
# TODO: THIS IS HORRIBLE
# TODO: WE USE THE OLD JSON PARSER EARLIER (WHICH DOES NOTHING) AND NOW THE NEW JSON PARSER
# TODO: THIS IS TOTALLY WRONG AND BAD, BUT SAVING FOR A LARGER REWRITE IN THE NEAR FUTURE
parsed_args = self.optimistic_json_parser.parse(self.current_function_arguments)
if parsed_args.get(self.assistant_message_tool_kwarg) and parsed_args.get(
self.assistant_message_tool_kwarg
) != self.current_json_parse_result.get(self.assistant_message_tool_kwarg):
new_content = parsed_args.get(self.assistant_message_tool_kwarg)
prev_content = self.current_json_parse_result.get(self.assistant_message_tool_kwarg, "")
# TODO: Assumes consistent state and that prev_content is subset of new_content
diff = new_content.replace(prev_content, "", 1)
self.current_json_parse_result = parsed_args
if prev_message_type and prev_message_type != "assistant_message":
message_index += 1
assistant_message = AssistantMessage(
id=self.letta_assistant_message_id,
date=datetime.now(timezone.utc),
content=diff,
# name=name,
otid=Message.generate_otid_from_id(self.letta_assistant_message_id, message_index),
)
prev_message_type = assistant_message.message_type
yield assistant_message
# Store the ID of the tool call so allow skipping the corresponding response
if self.function_id_buffer:
self.prev_assistant_message_id = self.function_id_buffer
# clear buffers
self.function_id_buffer = None
else:
# There may be a buffer from a previous chunk, for example
# if the previous chunk had arguments but we needed to flush name
if self.function_args_buffer:
# In this case, we should release the buffer + new data at once
combined_chunk = self.function_args_buffer + updates_main_json
if prev_message_type and prev_message_type != "tool_call_message":
message_index += 1
tool_call_msg = ToolCallMessage(
id=self.letta_tool_message_id,
date=datetime.now(timezone.utc),
tool_call=ToolCallDelta(
name=None,
arguments=combined_chunk,
tool_call_id=self.function_id_buffer,
),
# name=name,
otid=Message.generate_otid_from_id(self.letta_tool_message_id, message_index),
)
prev_message_type = tool_call_msg.message_type
yield tool_call_msg
# clear buffer
self.function_args_buffer = None
self.function_id_buffer = None
else:
# If there's no buffer to clear, just output a new chunk with new data
if prev_message_type and prev_message_type != "tool_call_message":
message_index += 1
tool_call_msg = ToolCallMessage(
id=self.letta_tool_message_id,
date=datetime.now(timezone.utc),
tool_call=ToolCallDelta(
name=None,
arguments=updates_main_json,
tool_call_id=self.function_id_buffer,
),
# name=name,
otid=Message.generate_otid_from_id(self.letta_tool_message_id, message_index),
)
prev_message_type = tool_call_msg.message_type
yield tool_call_msg
self.function_id_buffer = None