MemGPT/letta/schemas/llm_config.py

194 lines
8.5 KiB
Python

from typing import Literal, Optional
from pydantic import BaseModel, ConfigDict, Field, model_validator
from letta.constants import LETTA_MODEL_ENDPOINT
from letta.log import get_logger
from letta.schemas.enums import ProviderCategory
logger = get_logger(__name__)
class LLMConfig(BaseModel):
"""
Configuration for a Language Model (LLM) model. This object specifies all the information necessary to access an LLM model to usage with Letta, except for secret keys.
Attributes:
model (str): The name of the LLM model.
model_endpoint_type (str): The endpoint type for the model.
model_endpoint (str): The endpoint for the model.
model_wrapper (str): The wrapper for the model. This is used to wrap additional text around the input/output of the model. This is useful for text-to-text completions, such as the Completions API in OpenAI.
context_window (int): The context window size for the model.
put_inner_thoughts_in_kwargs (bool): Puts `inner_thoughts` as a kwarg in the function call if this is set to True. This helps with function calling performance and also the generation of inner thoughts.
temperature (float): The temperature to use when generating text with the model. A higher temperature will result in more random text.
max_tokens (int): The maximum number of tokens to generate.
"""
model: str = Field(..., description="LLM model name. ")
model_endpoint_type: Literal[
"openai",
"anthropic",
"cohere",
"google_ai",
"google_vertex",
"azure",
"groq",
"ollama",
"webui",
"webui-legacy",
"lmstudio",
"lmstudio-legacy",
"lmstudio-chatcompletions",
"llamacpp",
"koboldcpp",
"vllm",
"hugging-face",
"mistral",
"together", # completions endpoint
"bedrock",
"deepseek",
"xai",
] = Field(..., description="The endpoint type for the model.")
model_endpoint: Optional[str] = Field(None, description="The endpoint for the model.")
provider_name: Optional[str] = Field(None, description="The provider name for the model.")
provider_category: Optional[ProviderCategory] = Field(None, description="The provider category for the model.")
model_wrapper: Optional[str] = Field(None, description="The wrapper for the model.")
context_window: int = Field(..., description="The context window size for the model.")
put_inner_thoughts_in_kwargs: Optional[bool] = Field(
True,
description="Puts 'inner_thoughts' as a kwarg in the function call if this is set to True. This helps with function calling performance and also the generation of inner thoughts.",
)
handle: Optional[str] = Field(None, description="The handle for this config, in the format provider/model-name.")
temperature: float = Field(
0.7,
description="The temperature to use when generating text with the model. A higher temperature will result in more random text.",
)
max_tokens: Optional[int] = Field(
4096,
description="The maximum number of tokens to generate. If not set, the model will use its default value.",
)
enable_reasoner: bool = Field(
False, description="Whether or not the model should use extended thinking if it is a 'reasoning' style model"
)
reasoning_effort: Optional[Literal["low", "medium", "high"]] = Field(
None,
description="The reasoning effort to use when generating text reasoning models",
)
max_reasoning_tokens: int = Field(
0,
description="Configurable thinking budget for extended thinking. Used for enable_reasoner and also for Google Vertex models like Gemini 2.5 Flash. Minimum value is 1024 when used with enable_reasoner.",
)
# FIXME hack to silence pydantic protected namespace warning
model_config = ConfigDict(protected_namespaces=())
@model_validator(mode="before")
@classmethod
def set_default_enable_reasoner(cls, values):
# NOTE: this is really only applicable for models that can toggle reasoning on-and-off, like 3.7
# We can also use this field to identify if a model is a "reasoning" model (o1/o3, etc.) if we want
# if any(openai_reasoner_model in values.get("model", "") for openai_reasoner_model in ["o3-mini", "o1"]):
# values["enable_reasoner"] = True
# values["put_inner_thoughts_in_kwargs"] = False
return values
@model_validator(mode="before")
@classmethod
def set_default_put_inner_thoughts(cls, values):
"""
Dynamically set the default for put_inner_thoughts_in_kwargs based on the model field,
falling back to True if no specific rule is defined.
"""
model = values.get("model")
# Define models where we want put_inner_thoughts_in_kwargs to be False
avoid_put_inner_thoughts_in_kwargs = ["gpt-4"]
if values.get("put_inner_thoughts_in_kwargs") is None:
values["put_inner_thoughts_in_kwargs"] = False if model in avoid_put_inner_thoughts_in_kwargs else True
# For the o1/o3 series from OpenAI, set to False by default
# We can set this flag to `true` if desired, which will enable "double-think"
from letta.llm_api.openai_client import is_openai_reasoning_model
if is_openai_reasoning_model(model):
values["put_inner_thoughts_in_kwargs"] = False
if values.get("enable_reasoner") and values.get("model_endpoint_type") == "anthropic":
values["put_inner_thoughts_in_kwargs"] = False
return values
@model_validator(mode="after")
def issue_warning_for_reasoning_constraints(self) -> "LLMConfig":
if self.enable_reasoner:
if self.max_reasoning_tokens is None:
logger.warning("max_reasoning_tokens must be set when enable_reasoner is True")
if self.max_tokens is not None and self.max_reasoning_tokens >= self.max_tokens:
logger.warning("max_tokens must be greater than max_reasoning_tokens (thinking budget)")
if self.put_inner_thoughts_in_kwargs:
logger.debug("Extended thinking is not compatible with put_inner_thoughts_in_kwargs")
elif self.max_reasoning_tokens and not self.enable_reasoner:
logger.warning("model will not use reasoning unless enable_reasoner is set to True")
return self
@classmethod
def default_config(cls, model_name: str):
"""
Convenience function to generate a default `LLMConfig` from a model name. Only some models are supported in this function.
Args:
model_name (str): The name of the model (gpt-4, gpt-4o-mini, letta).
"""
if model_name == "gpt-4":
return cls(
model="gpt-4",
model_endpoint_type="openai",
model_endpoint="https://api.openai.com/v1",
model_wrapper=None,
context_window=8192,
put_inner_thoughts_in_kwargs=True,
)
elif model_name == "gpt-4o-mini":
return cls(
model="gpt-4o-mini",
model_endpoint_type="openai",
model_endpoint="https://api.openai.com/v1",
model_wrapper=None,
context_window=128000,
)
elif model_name == "gpt-4o":
return cls(
model="gpt-4o",
model_endpoint_type="openai",
model_endpoint="https://api.openai.com/v1",
model_wrapper=None,
context_window=128000,
)
elif model_name == "gpt-4.1":
return cls(
model="gpt-4.1",
model_endpoint_type="openai",
model_endpoint="https://api.openai.com/v1",
model_wrapper=None,
context_window=256000,
max_tokens=8192,
)
elif model_name == "letta":
return cls(
model="memgpt-openai",
model_endpoint_type="openai",
model_endpoint=LETTA_MODEL_ENDPOINT,
context_window=8192,
)
else:
raise ValueError(f"Model {model_name} not supported.")
def pretty_print(self) -> str:
return (
f"{self.model}"
+ (f" [type={self.model_endpoint_type}]" if self.model_endpoint_type else "")
+ (f" [ip={self.model_endpoint}]" if self.model_endpoint else "")
)