MemGPT/letta/schemas/providers.py
cthomas c0efe8ad0c
chore: bump version 0.7.21 (#2653)
Co-authored-by: Andy Li <55300002+cliandy@users.noreply.github.com>
Co-authored-by: Kevin Lin <klin5061@gmail.com>
Co-authored-by: Sarah Wooders <sarahwooders@gmail.com>
Co-authored-by: jnjpng <jin@letta.com>
Co-authored-by: Matthew Zhou <mattzh1314@gmail.com>
2025-05-21 16:33:29 -07:00

1491 lines
62 KiB
Python

import warnings
from datetime import datetime
from typing import List, Literal, Optional
from pydantic import BaseModel, Field, model_validator
from letta.constants import DEFAULT_EMBEDDING_CHUNK_SIZE, LETTA_MODEL_ENDPOINT, LLM_MAX_TOKENS, MIN_CONTEXT_WINDOW
from letta.llm_api.azure_openai import get_azure_chat_completions_endpoint, get_azure_embeddings_endpoint
from letta.llm_api.azure_openai_constants import AZURE_MODEL_TO_CONTEXT_LENGTH
from letta.schemas.embedding_config import EmbeddingConfig
from letta.schemas.embedding_config_overrides import EMBEDDING_HANDLE_OVERRIDES
from letta.schemas.enums import ProviderCategory, ProviderType
from letta.schemas.letta_base import LettaBase
from letta.schemas.llm_config import LLMConfig
from letta.schemas.llm_config_overrides import LLM_HANDLE_OVERRIDES
from letta.settings import model_settings
class ProviderBase(LettaBase):
__id_prefix__ = "provider"
class Provider(ProviderBase):
id: Optional[str] = Field(None, description="The id of the provider, lazily created by the database manager.")
name: str = Field(..., description="The name of the provider")
provider_type: ProviderType = Field(..., description="The type of the provider")
provider_category: ProviderCategory = Field(..., description="The category of the provider (base or byok)")
api_key: Optional[str] = Field(None, description="API key used for requests to the provider.")
base_url: Optional[str] = Field(None, description="Base URL for the provider.")
organization_id: Optional[str] = Field(None, description="The organization id of the user")
updated_at: Optional[datetime] = Field(None, description="The last update timestamp of the provider.")
@model_validator(mode="after")
def default_base_url(self):
if self.provider_type == ProviderType.openai and self.base_url is None:
self.base_url = model_settings.openai_api_base
return self
def resolve_identifier(self):
if not self.id:
self.id = ProviderBase.generate_id(prefix=ProviderBase.__id_prefix__)
def check_api_key(self):
"""Check if the API key is valid for the provider"""
raise NotImplementedError
def list_llm_models(self) -> List[LLMConfig]:
return []
async def list_llm_models_async(self) -> List[LLMConfig]:
return []
def list_embedding_models(self) -> List[EmbeddingConfig]:
return []
async def list_embedding_models_async(self) -> List[EmbeddingConfig]:
return []
def get_model_context_window(self, model_name: str) -> Optional[int]:
raise NotImplementedError
async def get_model_context_window_async(self, model_name: str) -> Optional[int]:
raise NotImplementedError
def provider_tag(self) -> str:
"""String representation of the provider for display purposes"""
raise NotImplementedError
def get_handle(self, model_name: str, is_embedding: bool = False, base_name: Optional[str] = None) -> str:
"""
Get the handle for a model, with support for custom overrides.
Args:
model_name (str): The name of the model.
is_embedding (bool, optional): Whether the handle is for an embedding model. Defaults to False.
Returns:
str: The handle for the model.
"""
base_name = base_name if base_name else self.name
overrides = EMBEDDING_HANDLE_OVERRIDES if is_embedding else LLM_HANDLE_OVERRIDES
if base_name in overrides and model_name in overrides[base_name]:
model_name = overrides[base_name][model_name]
return f"{base_name}/{model_name}"
def cast_to_subtype(self):
match (self.provider_type):
case ProviderType.letta:
return LettaProvider(**self.model_dump(exclude_none=True))
case ProviderType.openai:
return OpenAIProvider(**self.model_dump(exclude_none=True))
case ProviderType.anthropic:
return AnthropicProvider(**self.model_dump(exclude_none=True))
case ProviderType.anthropic_bedrock:
return AnthropicBedrockProvider(**self.model_dump(exclude_none=True))
case ProviderType.ollama:
return OllamaProvider(**self.model_dump(exclude_none=True))
case ProviderType.google_ai:
return GoogleAIProvider(**self.model_dump(exclude_none=True))
case ProviderType.google_vertex:
return GoogleVertexProvider(**self.model_dump(exclude_none=True))
case ProviderType.azure:
return AzureProvider(**self.model_dump(exclude_none=True))
case ProviderType.groq:
return GroqProvider(**self.model_dump(exclude_none=True))
case ProviderType.together:
return TogetherProvider(**self.model_dump(exclude_none=True))
case ProviderType.vllm_chat_completions:
return VLLMChatCompletionsProvider(**self.model_dump(exclude_none=True))
case ProviderType.vllm_completions:
return VLLMCompletionsProvider(**self.model_dump(exclude_none=True))
case ProviderType.xai:
return XAIProvider(**self.model_dump(exclude_none=True))
case _:
raise ValueError(f"Unknown provider type: {self.provider_type}")
class ProviderCreate(ProviderBase):
name: str = Field(..., description="The name of the provider.")
provider_type: ProviderType = Field(..., description="The type of the provider.")
api_key: str = Field(..., description="API key used for requests to the provider.")
class ProviderUpdate(ProviderBase):
api_key: str = Field(..., description="API key used for requests to the provider.")
class ProviderCheck(BaseModel):
provider_type: ProviderType = Field(..., description="The type of the provider.")
api_key: str = Field(..., description="API key used for requests to the provider.")
class LettaProvider(Provider):
provider_type: Literal[ProviderType.letta] = Field(ProviderType.letta, description="The type of the provider.")
provider_category: ProviderCategory = Field(ProviderCategory.base, description="The category of the provider (base or byok)")
def list_llm_models(self) -> List[LLMConfig]:
return [
LLMConfig(
model="letta-free", # NOTE: renamed
model_endpoint_type="openai",
model_endpoint=LETTA_MODEL_ENDPOINT,
context_window=8192,
handle=self.get_handle("letta-free"),
provider_name=self.name,
provider_category=self.provider_category,
)
]
async def list_llm_models_async(self) -> List[LLMConfig]:
return [
LLMConfig(
model="letta-free", # NOTE: renamed
model_endpoint_type="openai",
model_endpoint=LETTA_MODEL_ENDPOINT,
context_window=8192,
handle=self.get_handle("letta-free"),
provider_name=self.name,
provider_category=self.provider_category,
)
]
def list_embedding_models(self):
return [
EmbeddingConfig(
embedding_model="letta-free", # NOTE: renamed
embedding_endpoint_type="hugging-face",
embedding_endpoint="https://embeddings.memgpt.ai",
embedding_dim=1024,
embedding_chunk_size=300,
handle=self.get_handle("letta-free", is_embedding=True),
)
]
class OpenAIProvider(Provider):
provider_type: Literal[ProviderType.openai] = Field(ProviderType.openai, description="The type of the provider.")
provider_category: ProviderCategory = Field(ProviderCategory.base, description="The category of the provider (base or byok)")
api_key: str = Field(..., description="API key for the OpenAI API.")
base_url: str = Field(..., description="Base URL for the OpenAI API.")
def check_api_key(self):
from letta.llm_api.openai import openai_check_valid_api_key
openai_check_valid_api_key(self.base_url, self.api_key)
def _get_models(self) -> List[dict]:
from letta.llm_api.openai import openai_get_model_list
# Some hardcoded support for OpenRouter (so that we only get models with tool calling support)...
# See: https://openrouter.ai/docs/requests
extra_params = {"supported_parameters": "tools"} if "openrouter.ai" in self.base_url else None
# Similar to Nebius
extra_params = {"verbose": True} if "nebius.com" in self.base_url else None
response = openai_get_model_list(
self.base_url,
api_key=self.api_key,
extra_params=extra_params,
# fix_url=True, # NOTE: make sure together ends with /v1
)
if "data" in response:
data = response["data"]
else:
# TogetherAI's response is missing the 'data' field
data = response
return data
async def _get_models_async(self) -> List[dict]:
from letta.llm_api.openai import openai_get_model_list_async
# Some hardcoded support for OpenRouter (so that we only get models with tool calling support)...
# See: https://openrouter.ai/docs/requests
extra_params = {"supported_parameters": "tools"} if "openrouter.ai" in self.base_url else None
# Similar to Nebius
extra_params = {"verbose": True} if "nebius.com" in self.base_url else None
response = await openai_get_model_list_async(
self.base_url,
api_key=self.api_key,
extra_params=extra_params,
# fix_url=True, # NOTE: make sure together ends with /v1
)
if "data" in response:
data = response["data"]
else:
# TogetherAI's response is missing the 'data' field
data = response
return data
def list_llm_models(self) -> List[LLMConfig]:
data = self._get_models()
return self._list_llm_models(data)
async def list_llm_models_async(self) -> List[LLMConfig]:
data = await self._get_models_async()
return self._list_llm_models(data)
def _list_llm_models(self, data) -> List[LLMConfig]:
configs = []
for model in data:
assert "id" in model, f"OpenAI model missing 'id' field: {model}"
model_name = model["id"]
if "context_length" in model:
# Context length is returned in OpenRouter as "context_length"
context_window_size = model["context_length"]
else:
context_window_size = self.get_model_context_window_size(model_name)
if not context_window_size:
continue
# TogetherAI includes the type, which we can use to filter out embedding models
if "api.together.ai" in self.base_url or "api.together.xyz" in self.base_url:
if "type" in model and model["type"] not in ["chat", "language"]:
continue
# for TogetherAI, we need to skip the models that don't support JSON mode / function calling
# requests.exceptions.HTTPError: HTTP error occurred: 400 Client Error: Bad Request for url: https://api.together.ai/v1/chat/completions | Status code: 400, Message: {
# "error": {
# "message": "mistralai/Mixtral-8x7B-v0.1 is not supported for JSON mode/function calling",
# "type": "invalid_request_error",
# "param": null,
# "code": "constraints_model"
# }
# }
if "config" not in model:
continue
if "nebius.com" in self.base_url:
# Nebius includes the type, which we can use to filter for text models
try:
model_type = model["architecture"]["modality"]
if model_type not in ["text->text", "text+image->text"]:
# print(f"Skipping model w/ modality {model_type}:\n{model}")
continue
except KeyError:
print(f"Couldn't access architecture type field, skipping model:\n{model}")
continue
# for openai, filter models
if self.base_url == "https://api.openai.com/v1":
allowed_types = ["gpt-4", "o1", "o3"]
# NOTE: o1-mini and o1-preview do not support tool calling
# NOTE: o1-pro is only available in Responses API
disallowed_types = ["transcribe", "search", "realtime", "tts", "audio", "computer", "o1-mini", "o1-preview", "o1-pro"]
skip = True
for model_type in allowed_types:
if model_name.startswith(model_type):
skip = False
break
for keyword in disallowed_types:
if keyword in model_name:
skip = True
break
# ignore this model
if skip:
continue
# set the handle to openai-proxy if the base URL isn't OpenAI
if self.base_url != "https://api.openai.com/v1":
handle = self.get_handle(model_name, base_name="openai-proxy")
else:
handle = self.get_handle(model_name)
configs.append(
LLMConfig(
model=model_name,
model_endpoint_type="openai",
model_endpoint=self.base_url,
context_window=context_window_size,
handle=handle,
provider_name=self.name,
provider_category=self.provider_category,
)
)
# for OpenAI, sort in reverse order
if self.base_url == "https://api.openai.com/v1":
# alphnumeric sort
configs.sort(key=lambda x: x.model, reverse=True)
return configs
def list_embedding_models(self) -> List[EmbeddingConfig]:
if self.base_url == "https://api.openai.com/v1":
# TODO: actually automatically list models for OpenAI
return [
EmbeddingConfig(
embedding_model="text-embedding-ada-002",
embedding_endpoint_type="openai",
embedding_endpoint=self.base_url,
embedding_dim=1536,
embedding_chunk_size=300,
handle=self.get_handle("text-embedding-ada-002", is_embedding=True),
),
EmbeddingConfig(
embedding_model="text-embedding-3-small",
embedding_endpoint_type="openai",
embedding_endpoint=self.base_url,
embedding_dim=2000,
embedding_chunk_size=300,
handle=self.get_handle("text-embedding-3-small", is_embedding=True),
),
EmbeddingConfig(
embedding_model="text-embedding-3-large",
embedding_endpoint_type="openai",
embedding_endpoint=self.base_url,
embedding_dim=2000,
embedding_chunk_size=300,
handle=self.get_handle("text-embedding-3-large", is_embedding=True),
),
]
else:
# Actually attempt to list
data = self._get_models()
return self._list_embedding_models(data)
async def list_embedding_models_async(self) -> List[EmbeddingConfig]:
if self.base_url == "https://api.openai.com/v1":
# TODO: actually automatically list models for OpenAI
return [
EmbeddingConfig(
embedding_model="text-embedding-ada-002",
embedding_endpoint_type="openai",
embedding_endpoint=self.base_url,
embedding_dim=1536,
embedding_chunk_size=300,
handle=self.get_handle("text-embedding-ada-002", is_embedding=True),
),
EmbeddingConfig(
embedding_model="text-embedding-3-small",
embedding_endpoint_type="openai",
embedding_endpoint=self.base_url,
embedding_dim=2000,
embedding_chunk_size=300,
handle=self.get_handle("text-embedding-3-small", is_embedding=True),
),
EmbeddingConfig(
embedding_model="text-embedding-3-large",
embedding_endpoint_type="openai",
embedding_endpoint=self.base_url,
embedding_dim=2000,
embedding_chunk_size=300,
handle=self.get_handle("text-embedding-3-large", is_embedding=True),
),
]
else:
# Actually attempt to list
data = await self._get_models_async()
return self._list_embedding_models(data)
def _list_embedding_models(self, data) -> List[EmbeddingConfig]:
configs = []
for model in data:
assert "id" in model, f"Model missing 'id' field: {model}"
model_name = model["id"]
if "context_length" in model:
# Context length is returned in Nebius as "context_length"
context_window_size = model["context_length"]
else:
context_window_size = self.get_model_context_window_size(model_name)
# We need the context length for embeddings too
if not context_window_size:
continue
if "nebius.com" in self.base_url:
# Nebius includes the type, which we can use to filter for embedidng models
try:
model_type = model["architecture"]["modality"]
if model_type not in ["text->embedding"]:
# print(f"Skipping model w/ modality {model_type}:\n{model}")
continue
except KeyError:
print(f"Couldn't access architecture type field, skipping model:\n{model}")
continue
elif "together.ai" in self.base_url or "together.xyz" in self.base_url:
# TogetherAI includes the type, which we can use to filter for embedding models
if "type" in model and model["type"] not in ["embedding"]:
# print(f"Skipping model w/ modality {model_type}:\n{model}")
continue
else:
# For other providers we should skip by default, since we don't want to assume embeddings are supported
continue
configs.append(
EmbeddingConfig(
embedding_model=model_name,
embedding_endpoint_type=self.provider_type,
embedding_endpoint=self.base_url,
embedding_dim=context_window_size,
embedding_chunk_size=DEFAULT_EMBEDDING_CHUNK_SIZE,
handle=self.get_handle(model, is_embedding=True),
)
)
return configs
def get_model_context_window_size(self, model_name: str):
if model_name in LLM_MAX_TOKENS:
return LLM_MAX_TOKENS[model_name]
else:
return LLM_MAX_TOKENS["DEFAULT"]
class DeepSeekProvider(OpenAIProvider):
"""
DeepSeek ChatCompletions API is similar to OpenAI's reasoning API,
but with slight differences:
* For example, DeepSeek's API requires perfect interleaving of user/assistant
* It also does not support native function calling
"""
provider_type: Literal[ProviderType.deepseek] = Field(ProviderType.deepseek, description="The type of the provider.")
provider_category: ProviderCategory = Field(ProviderCategory.base, description="The category of the provider (base or byok)")
base_url: str = Field("https://api.deepseek.com/v1", description="Base URL for the DeepSeek API.")
api_key: str = Field(..., description="API key for the DeepSeek API.")
def get_model_context_window_size(self, model_name: str) -> Optional[int]:
# DeepSeek doesn't return context window in the model listing,
# so these are hardcoded from their website
if model_name == "deepseek-reasoner":
return 64000
elif model_name == "deepseek-chat":
return 64000
else:
return None
def list_llm_models(self) -> List[LLMConfig]:
from letta.llm_api.openai import openai_get_model_list
response = openai_get_model_list(self.base_url, api_key=self.api_key)
if "data" in response:
data = response["data"]
else:
data = response
configs = []
for model in data:
assert "id" in model, f"DeepSeek model missing 'id' field: {model}"
model_name = model["id"]
# In case DeepSeek starts supporting it in the future:
if "context_length" in model:
# Context length is returned in OpenRouter as "context_length"
context_window_size = model["context_length"]
else:
context_window_size = self.get_model_context_window_size(model_name)
if not context_window_size:
warnings.warn(f"Couldn't find context window size for model {model_name}")
continue
# Not used for deepseek-reasoner, but otherwise is true
put_inner_thoughts_in_kwargs = False if model_name == "deepseek-reasoner" else True
configs.append(
LLMConfig(
model=model_name,
model_endpoint_type="deepseek",
model_endpoint=self.base_url,
context_window=context_window_size,
handle=self.get_handle(model_name),
put_inner_thoughts_in_kwargs=put_inner_thoughts_in_kwargs,
provider_name=self.name,
provider_category=self.provider_category,
)
)
return configs
def list_embedding_models(self) -> List[EmbeddingConfig]:
# No embeddings supported
return []
class LMStudioOpenAIProvider(OpenAIProvider):
provider_type: Literal[ProviderType.lmstudio_openai] = Field(ProviderType.lmstudio_openai, description="The type of the provider.")
provider_category: ProviderCategory = Field(ProviderCategory.base, description="The category of the provider (base or byok)")
base_url: str = Field(..., description="Base URL for the LMStudio OpenAI API.")
api_key: Optional[str] = Field(None, description="API key for the LMStudio API.")
def list_llm_models(self) -> List[LLMConfig]:
from letta.llm_api.openai import openai_get_model_list
# For LMStudio, we want to hit 'GET /api/v0/models' instead of 'GET /v1/models'
MODEL_ENDPOINT_URL = f"{self.base_url.strip('/v1')}/api/v0"
response = openai_get_model_list(MODEL_ENDPOINT_URL)
"""
Example response:
{
"object": "list",
"data": [
{
"id": "qwen2-vl-7b-instruct",
"object": "model",
"type": "vlm",
"publisher": "mlx-community",
"arch": "qwen2_vl",
"compatibility_type": "mlx",
"quantization": "4bit",
"state": "not-loaded",
"max_context_length": 32768
},
...
"""
if "data" not in response:
warnings.warn(f"LMStudio OpenAI model query response missing 'data' field: {response}")
return []
configs = []
for model in response["data"]:
assert "id" in model, f"Model missing 'id' field: {model}"
model_name = model["id"]
if "type" not in model:
warnings.warn(f"LMStudio OpenAI model missing 'type' field: {model}")
continue
elif model["type"] not in ["vlm", "llm"]:
continue
if "max_context_length" in model:
context_window_size = model["max_context_length"]
else:
warnings.warn(f"LMStudio OpenAI model missing 'max_context_length' field: {model}")
continue
configs.append(
LLMConfig(
model=model_name,
model_endpoint_type="openai",
model_endpoint=self.base_url,
context_window=context_window_size,
handle=self.get_handle(model_name),
)
)
return configs
def list_embedding_models(self) -> List[EmbeddingConfig]:
from letta.llm_api.openai import openai_get_model_list
# For LMStudio, we want to hit 'GET /api/v0/models' instead of 'GET /v1/models'
MODEL_ENDPOINT_URL = f"{self.base_url.strip('/v1')}/api/v0"
response = openai_get_model_list(MODEL_ENDPOINT_URL)
"""
Example response:
{
"object": "list",
"data": [
{
"id": "text-embedding-nomic-embed-text-v1.5",
"object": "model",
"type": "embeddings",
"publisher": "nomic-ai",
"arch": "nomic-bert",
"compatibility_type": "gguf",
"quantization": "Q4_0",
"state": "not-loaded",
"max_context_length": 2048
}
...
"""
if "data" not in response:
warnings.warn(f"LMStudio OpenAI model query response missing 'data' field: {response}")
return []
configs = []
for model in response["data"]:
assert "id" in model, f"Model missing 'id' field: {model}"
model_name = model["id"]
if "type" not in model:
warnings.warn(f"LMStudio OpenAI model missing 'type' field: {model}")
continue
elif model["type"] not in ["embeddings"]:
continue
if "max_context_length" in model:
context_window_size = model["max_context_length"]
else:
warnings.warn(f"LMStudio OpenAI model missing 'max_context_length' field: {model}")
continue
configs.append(
EmbeddingConfig(
embedding_model=model_name,
embedding_endpoint_type="openai",
embedding_endpoint=self.base_url,
embedding_dim=context_window_size,
embedding_chunk_size=300, # NOTE: max is 2048
handle=self.get_handle(model_name),
),
)
return configs
class XAIProvider(OpenAIProvider):
"""https://docs.x.ai/docs/api-reference"""
provider_type: Literal[ProviderType.xai] = Field(ProviderType.xai, description="The type of the provider.")
provider_category: ProviderCategory = Field(ProviderCategory.base, description="The category of the provider (base or byok)")
api_key: str = Field(..., description="API key for the xAI/Grok API.")
base_url: str = Field("https://api.x.ai/v1", description="Base URL for the xAI/Grok API.")
def get_model_context_window_size(self, model_name: str) -> Optional[int]:
# xAI doesn't return context window in the model listing,
# so these are hardcoded from their website
if model_name == "grok-2-1212":
return 131072
# NOTE: disabling the minis for now since they return weird MM parts
# elif model_name == "grok-3-mini-fast-beta":
# return 131072
# elif model_name == "grok-3-mini-beta":
# return 131072
elif model_name == "grok-3-fast-beta":
return 131072
elif model_name == "grok-3-beta":
return 131072
else:
return None
def list_llm_models(self) -> List[LLMConfig]:
from letta.llm_api.openai import openai_get_model_list
response = openai_get_model_list(self.base_url, api_key=self.api_key)
if "data" in response:
data = response["data"]
else:
data = response
configs = []
for model in data:
assert "id" in model, f"xAI/Grok model missing 'id' field: {model}"
model_name = model["id"]
# In case xAI starts supporting it in the future:
if "context_length" in model:
context_window_size = model["context_length"]
else:
context_window_size = self.get_model_context_window_size(model_name)
if not context_window_size:
warnings.warn(f"Couldn't find context window size for model {model_name}")
continue
configs.append(
LLMConfig(
model=model_name,
model_endpoint_type="xai",
model_endpoint=self.base_url,
context_window=context_window_size,
handle=self.get_handle(model_name),
provider_name=self.name,
provider_category=self.provider_category,
)
)
return configs
def list_embedding_models(self) -> List[EmbeddingConfig]:
# No embeddings supported
return []
class AnthropicProvider(Provider):
provider_type: Literal[ProviderType.anthropic] = Field(ProviderType.anthropic, description="The type of the provider.")
provider_category: ProviderCategory = Field(ProviderCategory.base, description="The category of the provider (base or byok)")
api_key: str = Field(..., description="API key for the Anthropic API.")
base_url: str = "https://api.anthropic.com/v1"
def check_api_key(self):
from letta.llm_api.anthropic import anthropic_check_valid_api_key
anthropic_check_valid_api_key(self.api_key)
def list_llm_models(self) -> List[LLMConfig]:
from letta.llm_api.anthropic import anthropic_get_model_list
models = anthropic_get_model_list(api_key=self.api_key)
return self._list_llm_models(models)
async def list_llm_models_async(self) -> List[LLMConfig]:
from letta.llm_api.anthropic import anthropic_get_model_list_async
models = await anthropic_get_model_list_async(api_key=self.api_key)
return self._list_llm_models(models)
def _list_llm_models(self, models) -> List[LLMConfig]:
from letta.llm_api.anthropic import MODEL_LIST
configs = []
for model in models:
if model["type"] != "model":
continue
if "id" not in model:
continue
# Don't support 2.0 and 2.1
if model["id"].startswith("claude-2"):
continue
# Anthropic doesn't return the context window in their API
if "context_window" not in model:
# Remap list to name: context_window
model_library = {m["name"]: m["context_window"] for m in MODEL_LIST}
# Attempt to look it up in a hardcoded list
if model["id"] in model_library:
model["context_window"] = model_library[model["id"]]
else:
# On fallback, we can set 200k (generally safe), but we should warn the user
warnings.warn(f"Couldn't find context window size for model {model['id']}, defaulting to 200,000")
model["context_window"] = 200000
max_tokens = 8192
if "claude-3-opus" in model["id"]:
max_tokens = 4096
if "claude-3-haiku" in model["id"]:
max_tokens = 4096
# TODO: set for 3-7 extended thinking mode
# We set this to false by default, because Anthropic can
# natively support <thinking> tags inside of content fields
# However, putting COT inside of tool calls can make it more
# reliable for tool calling (no chance of a non-tool call step)
# Since tool_choice_type 'any' doesn't work with in-content COT
# NOTE For Haiku, it can be flaky if we don't enable this by default
# inner_thoughts_in_kwargs = True if "haiku" in model["id"] else False
inner_thoughts_in_kwargs = True # we no longer support thinking tags
configs.append(
LLMConfig(
model=model["id"],
model_endpoint_type="anthropic",
model_endpoint=self.base_url,
context_window=model["context_window"],
handle=self.get_handle(model["id"]),
put_inner_thoughts_in_kwargs=inner_thoughts_in_kwargs,
max_tokens=max_tokens,
provider_name=self.name,
provider_category=self.provider_category,
)
)
return configs
class MistralProvider(Provider):
provider_type: Literal[ProviderType.mistral] = Field(ProviderType.mistral, description="The type of the provider.")
provider_category: ProviderCategory = Field(ProviderCategory.base, description="The category of the provider (base or byok)")
api_key: str = Field(..., description="API key for the Mistral API.")
base_url: str = "https://api.mistral.ai/v1"
def list_llm_models(self) -> List[LLMConfig]:
from letta.llm_api.mistral import mistral_get_model_list
# Some hardcoded support for OpenRouter (so that we only get models with tool calling support)...
# See: https://openrouter.ai/docs/requests
response = mistral_get_model_list(self.base_url, api_key=self.api_key)
assert "data" in response, f"Mistral model query response missing 'data' field: {response}"
configs = []
for model in response["data"]:
# If model has chat completions and function calling enabled
if model["capabilities"]["completion_chat"] and model["capabilities"]["function_calling"]:
configs.append(
LLMConfig(
model=model["id"],
model_endpoint_type="openai",
model_endpoint=self.base_url,
context_window=model["max_context_length"],
handle=self.get_handle(model["id"]),
provider_name=self.name,
provider_category=self.provider_category,
)
)
return configs
def list_embedding_models(self) -> List[EmbeddingConfig]:
# Not supported for mistral
return []
def get_model_context_window(self, model_name: str) -> Optional[int]:
# Redoing this is fine because it's a pretty lightweight call
models = self.list_llm_models()
for m in models:
if model_name in m["id"]:
return int(m["max_context_length"])
return None
class OllamaProvider(OpenAIProvider):
"""Ollama provider that uses the native /api/generate endpoint
See: https://github.com/ollama/ollama/blob/main/docs/api.md#generate-a-completion
"""
provider_type: Literal[ProviderType.ollama] = Field(ProviderType.ollama, description="The type of the provider.")
provider_category: ProviderCategory = Field(ProviderCategory.base, description="The category of the provider (base or byok)")
base_url: str = Field(..., description="Base URL for the Ollama API.")
api_key: Optional[str] = Field(None, description="API key for the Ollama API (default: `None`).")
default_prompt_formatter: str = Field(
..., description="Default prompt formatter (aka model wrapper) to use on a /completions style API."
)
def list_llm_models(self) -> List[LLMConfig]:
# https://github.com/ollama/ollama/blob/main/docs/api.md#list-local-models
import requests
response = requests.get(f"{self.base_url}/api/tags")
if response.status_code != 200:
raise Exception(f"Failed to list Ollama models: {response.text}")
response_json = response.json()
configs = []
for model in response_json["models"]:
context_window = self.get_model_context_window(model["name"])
if context_window is None:
print(f"Ollama model {model['name']} has no context window")
continue
configs.append(
LLMConfig(
model=model["name"],
model_endpoint_type="ollama",
model_endpoint=self.base_url,
model_wrapper=self.default_prompt_formatter,
context_window=context_window,
handle=self.get_handle(model["name"]),
provider_name=self.name,
provider_category=self.provider_category,
)
)
return configs
def get_model_context_window(self, model_name: str) -> Optional[int]:
import requests
response = requests.post(f"{self.base_url}/api/show", json={"name": model_name, "verbose": True})
response_json = response.json()
## thank you vLLM: https://github.com/vllm-project/vllm/blob/main/vllm/config.py#L1675
# possible_keys = [
# # OPT
# "max_position_embeddings",
# # GPT-2
# "n_positions",
# # MPT
# "max_seq_len",
# # ChatGLM2
# "seq_length",
# # Command-R
# "model_max_length",
# # Others
# "max_sequence_length",
# "max_seq_length",
# "seq_len",
# ]
# max_position_embeddings
# parse model cards: nous, dolphon, llama
if "model_info" not in response_json:
if "error" in response_json:
print(f"Ollama fetch model info error for {model_name}: {response_json['error']}")
return None
for key, value in response_json["model_info"].items():
if "context_length" in key:
return value
return None
def get_model_embedding_dim(self, model_name: str):
import requests
response = requests.post(f"{self.base_url}/api/show", json={"name": model_name, "verbose": True})
response_json = response.json()
if "model_info" not in response_json:
if "error" in response_json:
print(f"Ollama fetch model info error for {model_name}: {response_json['error']}")
return None
for key, value in response_json["model_info"].items():
if "embedding_length" in key:
return value
return None
def list_embedding_models(self) -> List[EmbeddingConfig]:
# https://github.com/ollama/ollama/blob/main/docs/api.md#list-local-models
import requests
response = requests.get(f"{self.base_url}/api/tags")
if response.status_code != 200:
raise Exception(f"Failed to list Ollama models: {response.text}")
response_json = response.json()
configs = []
for model in response_json["models"]:
embedding_dim = self.get_model_embedding_dim(model["name"])
if not embedding_dim:
print(f"Ollama model {model['name']} has no embedding dimension")
continue
configs.append(
EmbeddingConfig(
embedding_model=model["name"],
embedding_endpoint_type="ollama",
embedding_endpoint=self.base_url,
embedding_dim=embedding_dim,
embedding_chunk_size=300,
handle=self.get_handle(model["name"], is_embedding=True),
)
)
return configs
class GroqProvider(OpenAIProvider):
provider_type: Literal[ProviderType.groq] = Field(ProviderType.groq, description="The type of the provider.")
provider_category: ProviderCategory = Field(ProviderCategory.base, description="The category of the provider (base or byok)")
base_url: str = "https://api.groq.com/openai/v1"
api_key: str = Field(..., description="API key for the Groq API.")
def list_llm_models(self) -> List[LLMConfig]:
from letta.llm_api.openai import openai_get_model_list
response = openai_get_model_list(self.base_url, api_key=self.api_key)
configs = []
for model in response["data"]:
if not "context_window" in model:
continue
configs.append(
LLMConfig(
model=model["id"],
model_endpoint_type="groq",
model_endpoint=self.base_url,
context_window=model["context_window"],
handle=self.get_handle(model["id"]),
provider_name=self.name,
provider_category=self.provider_category,
)
)
return configs
def list_embedding_models(self) -> List[EmbeddingConfig]:
return []
def get_model_context_window_size(self, model_name: str):
raise NotImplementedError
class TogetherProvider(OpenAIProvider):
"""TogetherAI provider that uses the /completions API
TogetherAI can also be used via the /chat/completions API
by settings OPENAI_API_KEY and OPENAI_API_BASE to the TogetherAI API key
and API URL, however /completions is preferred because their /chat/completions
function calling support is limited.
"""
provider_type: Literal[ProviderType.together] = Field(ProviderType.together, description="The type of the provider.")
provider_category: ProviderCategory = Field(ProviderCategory.base, description="The category of the provider (base or byok)")
base_url: str = "https://api.together.ai/v1"
api_key: str = Field(..., description="API key for the TogetherAI API.")
default_prompt_formatter: str = Field(..., description="Default prompt formatter (aka model wrapper) to use on vLLM /completions API.")
def list_llm_models(self) -> List[LLMConfig]:
from letta.llm_api.openai import openai_get_model_list
models = openai_get_model_list(self.base_url, api_key=self.api_key)
return self._list_llm_models(models)
async def list_llm_models_async(self) -> List[LLMConfig]:
from letta.llm_api.openai import openai_get_model_list_async
models = await openai_get_model_list_async(self.base_url, api_key=self.api_key)
return self._list_llm_models(models)
def _list_llm_models(self, models) -> List[LLMConfig]:
pass
# TogetherAI's response is missing the 'data' field
# assert "data" in response, f"OpenAI model query response missing 'data' field: {response}"
if "data" in models:
data = models["data"]
else:
data = models
configs = []
for model in data:
assert "id" in model, f"TogetherAI model missing 'id' field: {model}"
model_name = model["id"]
if "context_length" in model:
# Context length is returned in OpenRouter as "context_length"
context_window_size = model["context_length"]
else:
context_window_size = self.get_model_context_window_size(model_name)
# We need the context length for embeddings too
if not context_window_size:
continue
# Skip models that are too small for Letta
if context_window_size <= MIN_CONTEXT_WINDOW:
continue
# TogetherAI includes the type, which we can use to filter for embedding models
if "type" in model and model["type"] not in ["chat", "language"]:
continue
configs.append(
LLMConfig(
model=model_name,
model_endpoint_type="together",
model_endpoint=self.base_url,
model_wrapper=self.default_prompt_formatter,
context_window=context_window_size,
handle=self.get_handle(model_name),
provider_name=self.name,
provider_category=self.provider_category,
)
)
return configs
def list_embedding_models(self) -> List[EmbeddingConfig]:
# TODO renable once we figure out how to pass API keys through properly
return []
# from letta.llm_api.openai import openai_get_model_list
# response = openai_get_model_list(self.base_url, api_key=self.api_key)
# # TogetherAI's response is missing the 'data' field
# # assert "data" in response, f"OpenAI model query response missing 'data' field: {response}"
# if "data" in response:
# data = response["data"]
# else:
# data = response
# configs = []
# for model in data:
# assert "id" in model, f"TogetherAI model missing 'id' field: {model}"
# model_name = model["id"]
# if "context_length" in model:
# # Context length is returned in OpenRouter as "context_length"
# context_window_size = model["context_length"]
# else:
# context_window_size = self.get_model_context_window_size(model_name)
# if not context_window_size:
# continue
# # TogetherAI includes the type, which we can use to filter out embedding models
# if "type" in model and model["type"] not in ["embedding"]:
# continue
# configs.append(
# EmbeddingConfig(
# embedding_model=model_name,
# embedding_endpoint_type="openai",
# embedding_endpoint=self.base_url,
# embedding_dim=context_window_size,
# embedding_chunk_size=300, # TODO: change?
# )
# )
# return configs
class GoogleAIProvider(Provider):
# gemini
provider_type: Literal[ProviderType.google_ai] = Field(ProviderType.google_ai, description="The type of the provider.")
provider_category: ProviderCategory = Field(ProviderCategory.base, description="The category of the provider (base or byok)")
api_key: str = Field(..., description="API key for the Google AI API.")
base_url: str = "https://generativelanguage.googleapis.com"
def check_api_key(self):
from letta.llm_api.google_ai_client import google_ai_check_valid_api_key
google_ai_check_valid_api_key(self.api_key)
def list_llm_models(self):
from letta.llm_api.google_ai_client import google_ai_get_model_list
model_options = google_ai_get_model_list(base_url=self.base_url, api_key=self.api_key)
model_options = [mo for mo in model_options if "generateContent" in mo["supportedGenerationMethods"]]
model_options = [str(m["name"]) for m in model_options]
# filter by model names
model_options = [mo[len("models/") :] if mo.startswith("models/") else mo for mo in model_options]
# Add support for all gemini models
model_options = [mo for mo in model_options if str(mo).startswith("gemini-")]
configs = []
for model in model_options:
configs.append(
LLMConfig(
model=model,
model_endpoint_type="google_ai",
model_endpoint=self.base_url,
context_window=self.get_model_context_window(model),
handle=self.get_handle(model),
max_tokens=8192,
provider_name=self.name,
provider_category=self.provider_category,
)
)
return configs
async def list_llm_models_async(self):
import asyncio
from letta.llm_api.google_ai_client import google_ai_get_model_list_async
# Get and filter the model list
model_options = await google_ai_get_model_list_async(base_url=self.base_url, api_key=self.api_key)
model_options = [mo for mo in model_options if "generateContent" in mo["supportedGenerationMethods"]]
model_options = [str(m["name"]) for m in model_options]
# filter by model names
model_options = [mo[len("models/") :] if mo.startswith("models/") else mo for mo in model_options]
# Add support for all gemini models
model_options = [mo for mo in model_options if str(mo).startswith("gemini-")]
# Prepare tasks for context window lookups in parallel
async def create_config(model):
context_window = await self.get_model_context_window_async(model)
return LLMConfig(
model=model,
model_endpoint_type="google_ai",
model_endpoint=self.base_url,
context_window=context_window,
handle=self.get_handle(model),
max_tokens=8192,
provider_name=self.name,
provider_category=self.provider_category,
)
# Execute all config creation tasks concurrently
configs = await asyncio.gather(*[create_config(model) for model in model_options])
return configs
def list_embedding_models(self):
from letta.llm_api.google_ai_client import google_ai_get_model_list
# TODO: use base_url instead
model_options = google_ai_get_model_list(base_url=self.base_url, api_key=self.api_key)
return self._list_embedding_models(model_options)
async def list_embedding_models_async(self):
from letta.llm_api.google_ai_client import google_ai_get_model_list_async
# TODO: use base_url instead
model_options = await google_ai_get_model_list_async(base_url=self.base_url, api_key=self.api_key)
return self._list_embedding_models(model_options)
def _list_embedding_models(self, model_options):
# filter by 'generateContent' models
model_options = [mo for mo in model_options if "embedContent" in mo["supportedGenerationMethods"]]
model_options = [str(m["name"]) for m in model_options]
model_options = [mo[len("models/") :] if mo.startswith("models/") else mo for mo in model_options]
configs = []
for model in model_options:
configs.append(
EmbeddingConfig(
embedding_model=model,
embedding_endpoint_type="google_ai",
embedding_endpoint=self.base_url,
embedding_dim=768,
embedding_chunk_size=300, # NOTE: max is 2048
handle=self.get_handle(model, is_embedding=True),
)
)
return configs
def get_model_context_window(self, model_name: str) -> Optional[int]:
from letta.llm_api.google_ai_client import google_ai_get_model_context_window
if model_name in LLM_MAX_TOKENS:
return LLM_MAX_TOKENS[model_name]
else:
return google_ai_get_model_context_window(self.base_url, self.api_key, model_name)
async def get_model_context_window_async(self, model_name: str) -> Optional[int]:
from letta.llm_api.google_ai_client import google_ai_get_model_context_window_async
if model_name in LLM_MAX_TOKENS:
return LLM_MAX_TOKENS[model_name]
else:
return await google_ai_get_model_context_window_async(self.base_url, self.api_key, model_name)
class GoogleVertexProvider(Provider):
provider_type: Literal[ProviderType.google_vertex] = Field(ProviderType.google_vertex, description="The type of the provider.")
provider_category: ProviderCategory = Field(ProviderCategory.base, description="The category of the provider (base or byok)")
google_cloud_project: str = Field(..., description="GCP project ID for the Google Vertex API.")
google_cloud_location: str = Field(..., description="GCP region for the Google Vertex API.")
def list_llm_models(self) -> List[LLMConfig]:
from letta.llm_api.google_constants import GOOGLE_MODEL_TO_CONTEXT_LENGTH
configs = []
for model, context_length in GOOGLE_MODEL_TO_CONTEXT_LENGTH.items():
configs.append(
LLMConfig(
model=model,
model_endpoint_type="google_vertex",
model_endpoint=f"https://{self.google_cloud_location}-aiplatform.googleapis.com/v1/projects/{self.google_cloud_project}/locations/{self.google_cloud_location}",
context_window=context_length,
handle=self.get_handle(model),
max_tokens=8192,
provider_name=self.name,
provider_category=self.provider_category,
)
)
return configs
def list_embedding_models(self) -> List[EmbeddingConfig]:
from letta.llm_api.google_constants import GOOGLE_EMBEDING_MODEL_TO_DIM
configs = []
for model, dim in GOOGLE_EMBEDING_MODEL_TO_DIM.items():
configs.append(
EmbeddingConfig(
embedding_model=model,
embedding_endpoint_type="google_vertex",
embedding_endpoint=f"https://{self.google_cloud_location}-aiplatform.googleapis.com/v1/projects/{self.google_cloud_project}/locations/{self.google_cloud_location}",
embedding_dim=dim,
embedding_chunk_size=300, # NOTE: max is 2048
handle=self.get_handle(model, is_embedding=True),
)
)
return configs
class AzureProvider(Provider):
provider_type: Literal[ProviderType.azure] = Field(ProviderType.azure, description="The type of the provider.")
provider_category: ProviderCategory = Field(ProviderCategory.base, description="The category of the provider (base or byok)")
latest_api_version: str = "2024-09-01-preview" # https://learn.microsoft.com/en-us/azure/ai-services/openai/api-version-deprecation
base_url: str = Field(
..., description="Base URL for the Azure API endpoint. This should be specific to your org, e.g. `https://letta.openai.azure.com`."
)
api_key: str = Field(..., description="API key for the Azure API.")
api_version: str = Field(latest_api_version, description="API version for the Azure API")
@model_validator(mode="before")
def set_default_api_version(cls, values):
"""
This ensures that api_version is always set to the default if None is passed in.
"""
if values.get("api_version") is None:
values["api_version"] = cls.model_fields["latest_api_version"].default
return values
def list_llm_models(self) -> List[LLMConfig]:
from letta.llm_api.azure_openai import azure_openai_get_chat_completion_model_list
model_options = azure_openai_get_chat_completion_model_list(self.base_url, api_key=self.api_key, api_version=self.api_version)
configs = []
for model_option in model_options:
model_name = model_option["id"]
context_window_size = self.get_model_context_window(model_name)
model_endpoint = get_azure_chat_completions_endpoint(self.base_url, model_name, self.api_version)
configs.append(
LLMConfig(
model=model_name,
model_endpoint_type="azure",
model_endpoint=model_endpoint,
context_window=context_window_size,
handle=self.get_handle(model_name),
provider_name=self.name,
provider_category=self.provider_category,
),
)
return configs
def list_embedding_models(self) -> List[EmbeddingConfig]:
from letta.llm_api.azure_openai import azure_openai_get_embeddings_model_list
model_options = azure_openai_get_embeddings_model_list(
self.base_url, api_key=self.api_key, api_version=self.api_version, require_embedding_in_name=True
)
configs = []
for model_option in model_options:
model_name = model_option["id"]
model_endpoint = get_azure_embeddings_endpoint(self.base_url, model_name, self.api_version)
configs.append(
EmbeddingConfig(
embedding_model=model_name,
embedding_endpoint_type="azure",
embedding_endpoint=model_endpoint,
embedding_dim=768,
embedding_chunk_size=300, # NOTE: max is 2048
handle=self.get_handle(model_name),
),
)
return configs
def get_model_context_window(self, model_name: str) -> Optional[int]:
"""
This is hardcoded for now, since there is no API endpoints to retrieve metadata for a model.
"""
context_window = AZURE_MODEL_TO_CONTEXT_LENGTH.get(model_name, None)
if context_window is None:
context_window = LLM_MAX_TOKENS.get(model_name, 4096)
return context_window
class VLLMChatCompletionsProvider(Provider):
"""vLLM provider that treats vLLM as an OpenAI /chat/completions proxy"""
# NOTE: vLLM only serves one model at a time (so could configure that through env variables)
provider_type: Literal[ProviderType.vllm] = Field(ProviderType.vllm, description="The type of the provider.")
provider_category: ProviderCategory = Field(ProviderCategory.base, description="The category of the provider (base or byok)")
base_url: str = Field(..., description="Base URL for the vLLM API.")
def list_llm_models(self) -> List[LLMConfig]:
# not supported with vLLM
from letta.llm_api.openai import openai_get_model_list
assert self.base_url, "base_url is required for vLLM provider"
response = openai_get_model_list(self.base_url, api_key=None)
configs = []
for model in response["data"]:
configs.append(
LLMConfig(
model=model["id"],
model_endpoint_type="openai",
model_endpoint=self.base_url,
context_window=model["max_model_len"],
handle=self.get_handle(model["id"]),
provider_name=self.name,
provider_category=self.provider_category,
)
)
return configs
def list_embedding_models(self) -> List[EmbeddingConfig]:
# not supported with vLLM
return []
class VLLMCompletionsProvider(Provider):
"""This uses /completions API as the backend, not /chat/completions, so we need to specify a model wrapper"""
# NOTE: vLLM only serves one model at a time (so could configure that through env variables)
provider_type: Literal[ProviderType.vllm] = Field(ProviderType.vllm, description="The type of the provider.")
provider_category: ProviderCategory = Field(ProviderCategory.base, description="The category of the provider (base or byok)")
base_url: str = Field(..., description="Base URL for the vLLM API.")
default_prompt_formatter: str = Field(..., description="Default prompt formatter (aka model wrapper) to use on vLLM /completions API.")
def list_llm_models(self) -> List[LLMConfig]:
# not supported with vLLM
from letta.llm_api.openai import openai_get_model_list
response = openai_get_model_list(self.base_url, api_key=None)
configs = []
for model in response["data"]:
configs.append(
LLMConfig(
model=model["id"],
model_endpoint_type="vllm",
model_endpoint=self.base_url,
model_wrapper=self.default_prompt_formatter,
context_window=model["max_model_len"],
handle=self.get_handle(model["id"]),
provider_name=self.name,
provider_category=self.provider_category,
)
)
return configs
def list_embedding_models(self) -> List[EmbeddingConfig]:
# not supported with vLLM
return []
class CohereProvider(OpenAIProvider):
pass
class AnthropicBedrockProvider(Provider):
provider_type: Literal[ProviderType.bedrock] = Field(ProviderType.bedrock, description="The type of the provider.")
provider_category: ProviderCategory = Field(ProviderCategory.base, description="The category of the provider (base or byok)")
aws_region: str = Field(..., description="AWS region for Bedrock")
def list_llm_models(self):
from letta.llm_api.aws_bedrock import bedrock_get_model_list
models = bedrock_get_model_list(self.aws_region)
configs = []
for model_summary in models:
model_arn = model_summary["inferenceProfileArn"]
configs.append(
LLMConfig(
model=model_arn,
model_endpoint_type=self.provider_type.value,
model_endpoint=None,
context_window=self.get_model_context_window(model_arn),
handle=self.get_handle(model_arn),
provider_name=self.name,
provider_category=self.provider_category,
)
)
return configs
def list_embedding_models(self):
return []
def get_model_context_window(self, model_name: str) -> Optional[int]:
# Context windows for Claude models
from letta.llm_api.aws_bedrock import bedrock_get_model_context_window
return bedrock_get_model_context_window(model_name)
def get_handle(self, model_name: str) -> str:
print(model_name)
model = model_name.split(".")[-1]
return f"bedrock/{model}"