mirror of
https://github.com/cpacker/MemGPT.git
synced 2025-06-03 04:30:22 +00:00
156 lines
5.2 KiB
Python
156 lines
5.2 KiB
Python
import os
|
|
import threading
|
|
import time
|
|
import uuid
|
|
|
|
import pytest
|
|
from dotenv import load_dotenv
|
|
from openai import AsyncOpenAI
|
|
from openai.types.chat.chat_completion_chunk import ChatCompletionChunk
|
|
|
|
from letta import create_client
|
|
from letta.client.streaming import _sse_post
|
|
from letta.schemas.embedding_config import EmbeddingConfig
|
|
from letta.schemas.enums import MessageStreamStatus
|
|
from letta.schemas.llm_config import LLMConfig
|
|
from letta.schemas.openai.chat_completion_request import ChatCompletionRequest, UserMessage
|
|
from letta.schemas.usage import LettaUsageStatistics
|
|
|
|
# --- Server Management --- #
|
|
|
|
|
|
def _run_server():
|
|
"""Starts the Letta server in a background thread."""
|
|
load_dotenv()
|
|
from letta.server.rest_api.app import start_server
|
|
|
|
start_server(debug=True)
|
|
|
|
|
|
@pytest.fixture(scope="session")
|
|
def server_url():
|
|
"""Ensures a server is running and returns its base URL."""
|
|
url = os.getenv("LETTA_SERVER_URL", "http://localhost:8283")
|
|
|
|
if not os.getenv("LETTA_SERVER_URL"):
|
|
thread = threading.Thread(target=_run_server, daemon=True)
|
|
thread.start()
|
|
time.sleep(5) # Allow server startup time
|
|
|
|
return url
|
|
|
|
|
|
# --- Client Setup --- #
|
|
|
|
|
|
@pytest.fixture(scope="session")
|
|
def client(server_url):
|
|
"""Creates a REST client for testing."""
|
|
client = create_client(base_url=server_url, token=None)
|
|
client.set_default_llm_config(LLMConfig.default_config("gpt-4o-mini"))
|
|
client.set_default_embedding_config(EmbeddingConfig.default_config(provider="openai"))
|
|
yield client
|
|
|
|
|
|
@pytest.fixture(scope="function")
|
|
def roll_dice_tool(client):
|
|
def roll_dice():
|
|
"""
|
|
Rolls a 6 sided die.
|
|
|
|
Returns:
|
|
str: The roll result.
|
|
"""
|
|
return "Rolled a 10!"
|
|
|
|
tool = client.create_or_update_tool(func=roll_dice)
|
|
# Yield the created tool
|
|
yield tool
|
|
|
|
|
|
@pytest.fixture(scope="function")
|
|
def agent(client, roll_dice_tool):
|
|
"""Creates an agent and ensures cleanup after tests."""
|
|
agent_state = client.create_agent(name=f"test_client_{uuid.uuid4()}", tool_ids=[roll_dice_tool.id])
|
|
yield agent_state
|
|
client.delete_agent(agent_state.id)
|
|
|
|
|
|
# --- Helper Functions --- #
|
|
|
|
|
|
def _get_chat_request(agent_id, message, stream=True):
|
|
"""Returns a chat completion request with streaming enabled."""
|
|
return ChatCompletionRequest(
|
|
model="gpt-4o-mini",
|
|
messages=[UserMessage(content=message)],
|
|
user=agent_id,
|
|
stream=stream,
|
|
)
|
|
|
|
|
|
def _assert_valid_chunk(chunk, idx, chunks):
|
|
"""Validates the structure of each streaming chunk."""
|
|
if isinstance(chunk, ChatCompletionChunk):
|
|
assert chunk.choices, "Each ChatCompletionChunk should have at least one choice."
|
|
|
|
elif isinstance(chunk, LettaUsageStatistics):
|
|
assert chunk.completion_tokens > 0, "Completion tokens must be > 0."
|
|
assert chunk.prompt_tokens > 0, "Prompt tokens must be > 0."
|
|
assert chunk.total_tokens > 0, "Total tokens must be > 0."
|
|
assert chunk.step_count == 1, "Step count must be 1."
|
|
|
|
elif isinstance(chunk, MessageStreamStatus):
|
|
assert chunk == MessageStreamStatus.done, "Stream should end with 'done' status."
|
|
assert idx == len(chunks) - 1, "The last chunk must be 'done'."
|
|
|
|
else:
|
|
pytest.fail(f"Unexpected chunk type: {chunk}")
|
|
|
|
|
|
# --- Test Cases --- #
|
|
|
|
|
|
@pytest.mark.parametrize("message", ["Tell me something interesting about bananas."])
|
|
def test_chat_completions_streaming(mock_e2b_api_key_none, client, agent, message):
|
|
"""Tests chat completion streaming via SSE."""
|
|
request = _get_chat_request(agent.id, message)
|
|
|
|
response = _sse_post(
|
|
f"{client.base_url}/openai/{client.api_prefix}/chat/completions", request.model_dump(exclude_none=True), client.headers
|
|
)
|
|
|
|
try:
|
|
chunks = list(response)
|
|
assert len(chunks) > 1, "Streaming response did not return enough chunks (may have failed silently)."
|
|
|
|
for idx, chunk in enumerate(chunks):
|
|
assert chunk, f"Empty chunk received at index {idx}."
|
|
print(chunk)
|
|
_assert_valid_chunk(chunk, idx, chunks)
|
|
except Exception as e:
|
|
pytest.fail(f"Streaming failed with exception: {e}")
|
|
|
|
|
|
@pytest.mark.asyncio
|
|
@pytest.mark.parametrize("message", ["Tell me something interesting about bananas.", "Roll a dice!"])
|
|
async def test_chat_completions_streaming_async(client, agent, message):
|
|
"""Tests chat completion streaming using the Async OpenAI client."""
|
|
request = _get_chat_request(agent.id, message)
|
|
|
|
async_client = AsyncOpenAI(base_url=f"{client.base_url}/openai/{client.api_prefix}", max_retries=0)
|
|
stream = await async_client.chat.completions.create(**request.model_dump(exclude_none=True))
|
|
|
|
received_chunks = 0
|
|
try:
|
|
async with stream:
|
|
async for chunk in stream:
|
|
assert isinstance(chunk, ChatCompletionChunk), f"Unexpected chunk type: {type(chunk)}"
|
|
assert chunk.choices, "Each ChatCompletionChunk should have at least one choice."
|
|
assert chunk.choices[0].delta.content, f"Chunk at index 0 has no content: {chunk.model_dump_json(indent=4)}"
|
|
received_chunks += 1
|
|
except Exception as e:
|
|
pytest.fail(f"Streaming failed with exception: {e}")
|
|
|
|
assert received_chunks > 1, "No valid streaming chunks were received."
|