MemGPT/letta/llm_api/cohere.py

392 lines
14 KiB
Python

import json
import uuid
from typing import List, Optional, Union
import requests
from letta.helpers.datetime_helpers import get_utc_time
from letta.helpers.json_helpers import json_dumps
from letta.local_llm.utils import count_tokens
from letta.schemas.message import Message
from letta.schemas.openai.chat_completion_request import ChatCompletionRequest, Tool
from letta.schemas.openai.chat_completion_response import ChatCompletionResponse, Choice, FunctionCall
from letta.schemas.openai.chat_completion_response import (
Message as ChoiceMessage, # NOTE: avoid conflict with our own Letta Message datatype
)
from letta.schemas.openai.chat_completion_response import ToolCall, UsageStatistics
from letta.utils import get_tool_call_id, smart_urljoin
BASE_URL = "https://api.cohere.ai/v1"
# models that we know will work with Letta
COHERE_VALID_MODEL_LIST = [
"command-r-plus",
]
def cohere_get_model_details(url: str, api_key: Union[str, None], model: str) -> int:
"""https://docs.cohere.com/reference/get-model"""
from letta.utils import printd
url = smart_urljoin(url, "models")
url = smart_urljoin(url, model)
headers = {
"accept": "application/json",
"authorization": f"bearer {api_key}",
}
printd(f"Sending request to {url}")
try:
response = requests.get(url, headers=headers)
printd(f"response = {response}")
response.raise_for_status() # Raises HTTPError for 4XX/5XX status
response = response.json() # convert to dict from string
return response
except requests.exceptions.HTTPError as http_err:
# Handle HTTP errors (e.g., response 4XX, 5XX)
printd(f"Got HTTPError, exception={http_err}")
raise http_err
except requests.exceptions.RequestException as req_err:
# Handle other requests-related errors (e.g., connection error)
printd(f"Got RequestException, exception={req_err}")
raise req_err
except Exception as e:
# Handle other potential errors
printd(f"Got unknown Exception, exception={e}")
raise e
def cohere_get_model_context_window(url: str, api_key: Union[str, None], model: str) -> int:
model_details = cohere_get_model_details(url=url, api_key=api_key, model=model)
return model_details["context_length"]
def cohere_get_model_list(url: str, api_key: Union[str, None]) -> dict:
"""https://docs.cohere.com/reference/list-models"""
from letta.utils import printd
url = smart_urljoin(url, "models")
headers = {
"accept": "application/json",
"authorization": f"bearer {api_key}",
}
printd(f"Sending request to {url}")
try:
response = requests.get(url, headers=headers)
printd(f"response = {response}")
response.raise_for_status() # Raises HTTPError for 4XX/5XX status
response = response.json() # convert to dict from string
return response["models"]
except requests.exceptions.HTTPError as http_err:
# Handle HTTP errors (e.g., response 4XX, 5XX)
printd(f"Got HTTPError, exception={http_err}")
raise http_err
except requests.exceptions.RequestException as req_err:
# Handle other requests-related errors (e.g., connection error)
printd(f"Got RequestException, exception={req_err}")
raise req_err
except Exception as e:
# Handle other potential errors
printd(f"Got unknown Exception, exception={e}")
raise e
def remap_finish_reason(finish_reason: str) -> str:
"""Remap Cohere's 'finish_reason' to OpenAI 'finish_reason'
OpenAI: 'stop', 'length', 'function_call', 'content_filter', null
see: https://platform.openai.com/docs/guides/text-generation/chat-completions-api
Cohere finish_reason is different but undocumented ???
"""
if finish_reason == "COMPLETE":
return "stop"
elif finish_reason == "MAX_TOKENS":
return "length"
# elif stop_reason == "tool_use":
# return "function_call"
else:
raise ValueError(f"Unexpected stop_reason: {finish_reason}")
def convert_cohere_response_to_chatcompletion(
response_json: dict, # REST response from API
model: str, # Required since not returned
inner_thoughts_in_kwargs: Optional[bool] = True,
) -> ChatCompletionResponse:
"""
Example response from command-r-plus:
response.json = {
'response_id': '28c47751-acce-41cd-8c89-c48a15ac33cf',
'text': '',
'generation_id': '84209c9e-2868-4984-82c5-063b748b7776',
'chat_history': [
{
'role': 'CHATBOT',
'message': 'Bootup sequence complete. Persona activated. Testing messaging functionality.'
},
{
'role': 'SYSTEM',
'message': '{"status": "OK", "message": null, "time": "2024-04-11 11:22:36 PM PDT-0700"}'
}
],
'finish_reason': 'COMPLETE',
'meta': {
'api_version': {'version': '1'},
'billed_units': {'input_tokens': 692, 'output_tokens': 20},
'tokens': {'output_tokens': 20}
},
'tool_calls': [
{
'name': 'send_message',
'parameters': {
'message': "Hello Chad, it's Sam. How are you feeling today?"
}
}
]
}
"""
if "billed_units" in response_json["meta"]:
prompt_tokens = response_json["meta"]["billed_units"]["input_tokens"]
completion_tokens = response_json["meta"]["billed_units"]["output_tokens"]
else:
# For some reason input_tokens not included in 'meta' 'tokens' dict?
prompt_tokens = count_tokens(json_dumps(response_json["chat_history"])) # NOTE: this is a very rough approximation
completion_tokens = response_json["meta"]["tokens"]["output_tokens"]
finish_reason = remap_finish_reason(response_json["finish_reason"])
if "tool_calls" in response_json and response_json["tool_calls"] is not None:
inner_thoughts = []
tool_calls = []
for tool_call_response in response_json["tool_calls"]:
function_name = tool_call_response["name"]
function_args = tool_call_response["parameters"]
if inner_thoughts_in_kwargs:
from letta.local_llm.constants import INNER_THOUGHTS_KWARG
assert INNER_THOUGHTS_KWARG in function_args
# NOTE:
inner_thoughts.append(function_args.pop(INNER_THOUGHTS_KWARG))
tool_calls.append(
ToolCall(
id=get_tool_call_id(),
type="function",
function=FunctionCall(
name=function_name,
arguments=json.dumps(function_args),
),
)
)
# NOTE: no multi-call support for now
assert len(tool_calls) == 1, tool_calls
content = inner_thoughts[0]
else:
# raise NotImplementedError(f"Expected a tool call response from Cohere API")
content = response_json["text"]
tool_calls = None
# In Cohere API empty string == null
content = None if content == "" else content
assert content is not None or tool_calls is not None, "Response message must have either content or tool_calls"
choice = Choice(
index=0,
finish_reason=finish_reason,
message=ChoiceMessage(
role="assistant",
content=content,
tool_calls=tool_calls,
),
)
return ChatCompletionResponse(
id=response_json["response_id"],
choices=[choice],
created=get_utc_time(),
model=model,
usage=UsageStatistics(
prompt_tokens=prompt_tokens,
completion_tokens=completion_tokens,
total_tokens=prompt_tokens + completion_tokens,
),
)
def convert_tools_to_cohere_format(tools: List[Tool], inner_thoughts_in_kwargs: Optional[bool] = True) -> List[dict]:
"""See: https://docs.cohere.com/reference/chat
OpenAI style:
"tools": [{
"type": "function",
"function": {
"name": "find_movies",
"description": "find ....",
"parameters": {
"type": "object",
"properties": {
PARAM: {
"type": PARAM_TYPE, # eg "string"
"description": PARAM_DESCRIPTION,
},
...
},
"required": List[str],
}
}
}]
Cohere style:
"tools": [{
"name": "find_movies",
"description": "find ....",
"parameter_definitions": {
PARAM_NAME: {
"description": PARAM_DESCRIPTION,
"type": PARAM_TYPE, # eg "string"
"required": <boolean>,
}
},
}
}]
"""
tools_dict_list = []
for tool in tools:
tools_dict_list.append(
{
"name": tool.function.name,
"description": tool.function.description,
"parameter_definitions": {
p_name: {
"description": p_fields["description"],
"type": p_fields["type"],
"required": p_name in tool.function.parameters["required"],
}
for p_name, p_fields in tool.function.parameters["properties"].items()
},
}
)
if inner_thoughts_in_kwargs:
# NOTE: since Cohere doesn't allow "text" in the response when a tool call happens, if we want
# a simultaneous CoT + tool call we need to put it inside a kwarg
from letta.local_llm.constants import INNER_THOUGHTS_KWARG, INNER_THOUGHTS_KWARG_DESCRIPTION
for cohere_tool in tools_dict_list:
cohere_tool["parameter_definitions"][INNER_THOUGHTS_KWARG] = {
"description": INNER_THOUGHTS_KWARG_DESCRIPTION,
"type": "string",
"required": True,
}
return tools_dict_list
def cohere_chat_completions_request(
url: str,
api_key: str,
chat_completion_request: ChatCompletionRequest,
) -> ChatCompletionResponse:
"""https://docs.cohere.com/docs/multi-step-tool-use"""
from letta.utils import printd
url = smart_urljoin(url, "chat")
headers = {
"Content-Type": "application/json",
"Authorization": f"bearer {api_key}",
}
# convert the tools
cohere_tools = None if chat_completion_request.tools is None else convert_tools_to_cohere_format(chat_completion_request.tools)
# pydantic -> dict
data = chat_completion_request.model_dump(exclude_none=True)
if "functions" in data:
raise ValueError(f"'functions' unexpected in Anthropic API payload")
# If tools == None, strip from the payload
if "tools" in data and data["tools"] is None:
data.pop("tools")
data.pop("tool_choice", None) # extra safe, should exist always (default="auto")
# Convert messages to Cohere format
msg_objs = [Message.dict_to_message(user_id=uuid.uuid4(), agent_id=uuid.uuid4(), openai_message_dict=m) for m in data["messages"]]
# System message 0 should instead be a "preamble"
# See: https://docs.cohere.com/reference/chat
# The chat_history parameter should not be used for SYSTEM messages in most cases. Instead, to add a SYSTEM role message at the beginning of a conversation, the preamble parameter should be used.
assert msg_objs[0].role == "system", msg_objs[0]
preamble = msg_objs[0].content[0].text
# data["messages"] = [m.to_cohere_dict() for m in msg_objs[1:]]
data["messages"] = []
for m in msg_objs[1:]:
ms = m.to_cohere_dict() # NOTE: returns List[dict]
data["messages"].extend(ms)
assert data["messages"][-1]["role"] == "USER", data["messages"][-1]
data = {
"preamble": preamble,
"chat_history": data["messages"][:-1],
"message": data["messages"][-1]["message"],
"tools": cohere_tools,
}
# Move 'system' to the top level
# 'messages: Unexpected role "system". The Messages API accepts a top-level `system` parameter, not "system" as an input message role.'
# assert data["messages"][0]["role"] == "system", f"Expected 'system' role in messages[0]:\n{data['messages'][0]}"
# data["system"] = data["messages"][0]["content"]
# data["messages"] = data["messages"][1:]
# Convert to Anthropic format
# msg_objs = [Message.dict_to_message(user_id=uuid.uuid4(), agent_id=uuid.uuid4(), openai_message_dict=m) for m in data["messages"]]
# data["messages"] = [m.to_anthropic_dict(inner_thoughts_xml_tag=inner_thoughts_xml_tag) for m in msg_objs]
# Handling Anthropic special requirement for 'user' message in front
# messages: first message must use the "user" role'
# if data["messages"][0]["role"] != "user":
# data["messages"] = [{"role": "user", "content": DUMMY_FIRST_USER_MESSAGE}] + data["messages"]
# Handle Anthropic's restriction on alternating user/assistant messages
# data["messages"] = merge_tool_results_into_user_messages(data["messages"])
# Anthropic also wants max_tokens in the input
# It's also part of ChatCompletions
# assert "max_tokens" in data, data
# Remove extra fields used by OpenAI but not Anthropic
# data.pop("frequency_penalty", None)
# data.pop("logprobs", None)
# data.pop("n", None)
# data.pop("top_p", None)
# data.pop("presence_penalty", None)
# data.pop("user", None)
# data.pop("tool_choice", None)
printd(f"Sending request to {url}")
try:
response = requests.post(url, headers=headers, json=data)
printd(f"response = {response}")
response.raise_for_status() # Raises HTTPError for 4XX/5XX status
response = response.json() # convert to dict from string
printd(f"response.json = {response}")
response = convert_cohere_response_to_chatcompletion(response_json=response, model=chat_completion_request.model)
return response
except requests.exceptions.HTTPError as http_err:
# Handle HTTP errors (e.g., response 4XX, 5XX)
printd(f"Got HTTPError, exception={http_err}, payload={data}")
raise http_err
except requests.exceptions.RequestException as req_err:
# Handle other requests-related errors (e.g., connection error)
printd(f"Got RequestException, exception={req_err}")
raise req_err
except Exception as e:
# Handle other potential errors
printd(f"Got unknown Exception, exception={e}")
raise e