MemGPT/letta/client/client.py
2024-10-22 15:02:28 -07:00

2712 lines
91 KiB
Python

import logging
import time
from typing import Callable, Dict, Generator, List, Optional, Union
import requests
import letta.utils
from letta.constants import BASE_TOOLS, DEFAULT_HUMAN, DEFAULT_PERSONA
from letta.data_sources.connectors import DataConnector
from letta.functions.functions import parse_source_code
from letta.memory import get_memory_functions
from letta.schemas.agent import AgentState, AgentType, CreateAgent, UpdateAgentState
from letta.schemas.block import (
Block,
CreateBlock,
CreateHuman,
CreatePersona,
Human,
Persona,
UpdateBlock,
UpdateHuman,
UpdatePersona,
)
from letta.schemas.embedding_config import EmbeddingConfig
# new schemas
from letta.schemas.enums import JobStatus, MessageRole
from letta.schemas.file import FileMetadata
from letta.schemas.job import Job
from letta.schemas.letta_request import LettaRequest
from letta.schemas.letta_response import LettaResponse, LettaStreamingResponse
from letta.schemas.llm_config import LLMConfig
from letta.schemas.memory import (
ArchivalMemorySummary,
ChatMemory,
CreateArchivalMemory,
Memory,
RecallMemorySummary,
)
from letta.schemas.message import Message, MessageCreate, UpdateMessage
from letta.schemas.openai.chat_completions import ToolCall
from letta.schemas.passage import Passage
from letta.schemas.source import Source, SourceCreate, SourceUpdate
from letta.schemas.tool import Tool, ToolCreate, ToolUpdate
from letta.server.rest_api.interface import QueuingInterface
from letta.server.server import SyncServer
from letta.utils import get_human_text, get_persona_text
def create_client(base_url: Optional[str] = None, token: Optional[str] = None):
if base_url is None:
return LocalClient()
else:
return RESTClient(base_url, token)
class AbstractClient(object):
def __init__(
self,
auto_save: bool = False,
debug: bool = False,
):
self.auto_save = auto_save
self.debug = debug
def agent_exists(self, agent_id: Optional[str] = None, agent_name: Optional[str] = None) -> bool:
raise NotImplementedError
def create_agent(
self,
name: Optional[str] = None,
agent_type: Optional[AgentType] = AgentType.memgpt_agent,
embedding_config: Optional[EmbeddingConfig] = None,
llm_config: Optional[LLMConfig] = None,
memory: Memory = ChatMemory(human=get_human_text(DEFAULT_HUMAN), persona=get_persona_text(DEFAULT_PERSONA)),
system: Optional[str] = None,
tools: Optional[List[str]] = None,
include_base_tools: Optional[bool] = True,
metadata: Optional[Dict] = {"human:": DEFAULT_HUMAN, "persona": DEFAULT_PERSONA},
description: Optional[str] = None,
) -> AgentState:
raise NotImplementedError
def update_agent(
self,
agent_id: str,
name: Optional[str] = None,
description: Optional[str] = None,
system: Optional[str] = None,
tools: Optional[List[str]] = None,
metadata: Optional[Dict] = None,
llm_config: Optional[LLMConfig] = None,
embedding_config: Optional[EmbeddingConfig] = None,
message_ids: Optional[List[str]] = None,
memory: Optional[Memory] = None,
):
raise NotImplementedError
def get_tools_from_agent(self, agent_id: str):
raise NotImplementedError
def add_tool_to_agent(self, agent_id: str, tool_id: str):
raise NotImplementedError
def remove_tool_from_agent(self, agent_id: str, tool_id: str):
raise NotImplementedError
def rename_agent(self, agent_id: str, new_name: str):
raise NotImplementedError
def delete_agent(self, agent_id: str):
raise NotImplementedError
def get_agent(self, agent_id: str) -> AgentState:
raise NotImplementedError
def get_agent_id(self, agent_name: str) -> AgentState:
raise NotImplementedError
def get_in_context_memory(self, agent_id: str) -> Memory:
raise NotImplementedError
def update_in_context_memory(self, agent_id: str, section: str, value: Union[List[str], str]) -> Memory:
raise NotImplementedError
def get_archival_memory_summary(self, agent_id: str) -> ArchivalMemorySummary:
raise NotImplementedError
def get_recall_memory_summary(self, agent_id: str) -> RecallMemorySummary:
raise NotImplementedError
def get_in_context_messages(self, agent_id: str) -> List[Message]:
raise NotImplementedError
def send_message(
self,
message: str,
role: str,
agent_id: Optional[str] = None,
name: Optional[str] = None,
stream: Optional[bool] = False,
include_full_message: Optional[bool] = False,
) -> LettaResponse:
raise NotImplementedError
def user_message(self, agent_id: str, message: str, include_full_message: Optional[bool] = False) -> LettaResponse:
raise NotImplementedError
def create_human(self, name: str, text: str) -> Human:
raise NotImplementedError
def create_persona(self, name: str, text: str) -> Persona:
raise NotImplementedError
def list_humans(self) -> List[Human]:
raise NotImplementedError
def list_personas(self) -> List[Persona]:
raise NotImplementedError
def update_human(self, human_id: str, text: str) -> Human:
raise NotImplementedError
def update_persona(self, persona_id: str, text: str) -> Persona:
raise NotImplementedError
def get_persona(self, id: str) -> Persona:
raise NotImplementedError
def get_human(self, id: str) -> Human:
raise NotImplementedError
def get_persona_id(self, name: str) -> str:
raise NotImplementedError
def get_human_id(self, name: str) -> str:
raise NotImplementedError
def delete_persona(self, id: str):
raise NotImplementedError
def delete_human(self, id: str):
raise NotImplementedError
def create_tool(
self,
func,
name: Optional[str] = None,
update: Optional[bool] = True,
tags: Optional[List[str]] = None,
) -> Tool:
raise NotImplementedError
def update_tool(
self,
id: str,
name: Optional[str] = None,
func: Optional[Callable] = None,
tags: Optional[List[str]] = None,
) -> Tool:
raise NotImplementedError
def list_tools(self, cursor: Optional[str] = None, limit: Optional[int] = 50) -> List[Tool]:
raise NotImplementedError
def get_tool(self, id: str) -> Tool:
raise NotImplementedError
def delete_tool(self, id: str):
raise NotImplementedError
def get_tool_id(self, name: str) -> Optional[str]:
raise NotImplementedError
def load_data(self, connector: DataConnector, source_name: str):
raise NotImplementedError
def load_file_to_source(self, filename: str, source_id: str, blocking=True) -> Job:
raise NotImplementedError
def delete_file_from_source(self, source_id: str, file_id: str) -> None:
raise NotImplementedError
def create_source(self, name: str) -> Source:
raise NotImplementedError
def delete_source(self, source_id: str):
raise NotImplementedError
def get_source(self, source_id: str) -> Source:
raise NotImplementedError
def get_source_id(self, source_name: str) -> str:
raise NotImplementedError
def attach_source_to_agent(self, agent_id: str, source_id: Optional[str] = None, source_name: Optional[str] = None):
raise NotImplementedError
def detach_source_from_agent(self, agent_id: str, source_id: Optional[str] = None, source_name: Optional[str] = None):
raise NotImplementedError
def list_sources(self) -> List[Source]:
raise NotImplementedError
def list_attached_sources(self, agent_id: str) -> List[Source]:
raise NotImplementedError
def list_files_from_source(self, source_id: str, limit: int = 1000, cursor: Optional[str] = None) -> List[FileMetadata]:
raise NotImplementedError
def update_source(self, source_id: str, name: Optional[str] = None) -> Source:
raise NotImplementedError
def insert_archival_memory(self, agent_id: str, memory: str) -> List[Passage]:
raise NotImplementedError
def delete_archival_memory(self, agent_id: str, memory_id: str):
raise NotImplementedError
def get_archival_memory(
self, agent_id: str, before: Optional[str] = None, after: Optional[str] = None, limit: Optional[int] = 1000
) -> List[Passage]:
raise NotImplementedError
def get_messages(
self, agent_id: str, before: Optional[str] = None, after: Optional[str] = None, limit: Optional[int] = 1000
) -> List[Message]:
raise NotImplementedError
def list_models(self) -> List[LLMConfig]:
raise NotImplementedError
def list_embedding_models(self) -> List[EmbeddingConfig]:
raise NotImplementedError
class RESTClient(AbstractClient):
"""
REST client for Letta
Attributes:
base_url (str): Base URL of the REST API
headers (Dict): Headers for the REST API (includes token)
"""
def __init__(
self,
base_url: str,
token: str,
api_prefix: str = "v1",
debug: bool = False,
default_llm_config: Optional[LLMConfig] = None,
default_embedding_config: Optional[EmbeddingConfig] = None,
):
"""
Initializes a new instance of Client class.
Args:
auto_save (bool): Whether to automatically save changes.
user_id (str): The user ID.
debug (bool): Whether to print debug information.
default
"""
super().__init__(debug=debug)
self.base_url = base_url
self.api_prefix = api_prefix
self.headers = {"accept": "application/json", "authorization": f"Bearer {token}"}
self._default_llm_config = default_llm_config
self._default_embedding_config = default_embedding_config
def list_agents(self) -> List[AgentState]:
response = requests.get(f"{self.base_url}/{self.api_prefix}/agents", headers=self.headers)
return [AgentState(**agent) for agent in response.json()]
def agent_exists(self, agent_id: str) -> bool:
"""
Check if an agent exists
Args:
agent_id (str): ID of the agent
agent_name (str): Name of the agent
Returns:
exists (bool): `True` if the agent exists, `False` otherwise
"""
response = requests.get(f"{self.base_url}/{self.api_prefix}/agents/{agent_id}", headers=self.headers)
if response.status_code == 404:
# not found error
return False
elif response.status_code == 200:
return True
else:
raise ValueError(f"Failed to check if agent exists: {response.text}")
def create_agent(
self,
name: Optional[str] = None,
# agent config
agent_type: Optional[AgentType] = AgentType.memgpt_agent,
# model configs
embedding_config: EmbeddingConfig = None,
llm_config: LLMConfig = None,
# memory
memory: Memory = ChatMemory(human=get_human_text(DEFAULT_HUMAN), persona=get_persona_text(DEFAULT_PERSONA)),
# system
system: Optional[str] = None,
# tools
tools: Optional[List[str]] = None,
include_base_tools: Optional[bool] = True,
# metadata
metadata: Optional[Dict] = {"human:": DEFAULT_HUMAN, "persona": DEFAULT_PERSONA},
description: Optional[str] = None,
) -> AgentState:
"""Create an agent
Args:
name (str): Name of the agent
embedding_config (EmbeddingConfig): Embedding configuration
llm_config (LLMConfig): LLM configuration
memory (Memory): Memory configuration
system (str): System configuration
tools (List[str]): List of tools
include_base_tools (bool): Include base tools
metadata (Dict): Metadata
description (str): Description
Returns:
agent_state (AgentState): State of the created agent
"""
# TODO: implement this check once name lookup works
# if name:
# exist_agent_id = self.get_agent_id(agent_name=name)
# raise ValueError(f"Agent with name {name} already exists")
# construct list of tools
tool_names = []
if tools:
tool_names += tools
if include_base_tools:
tool_names += BASE_TOOLS
# add memory tools
memory_functions = get_memory_functions(memory)
for func_name, func in memory_functions.items():
tool = self.create_tool(func, name=func_name, tags=["memory", "letta-base"], update=True)
tool_names.append(tool.name)
# check if default configs are provided
assert embedding_config or self._default_embedding_config, f"Embedding config must be provided"
assert llm_config or self._default_llm_config, f"LLM config must be provided"
# create agent
request = CreateAgent(
name=name,
description=description,
metadata_=metadata,
memory=memory,
tools=tool_names,
system=system,
agent_type=agent_type,
llm_config=llm_config if llm_config else self._default_llm_config,
embedding_config=embedding_config if embedding_config else self._default_embedding_config,
)
response = requests.post(f"{self.base_url}/{self.api_prefix}/agents", json=request.model_dump(), headers=self.headers)
if response.status_code != 200:
raise ValueError(f"Status {response.status_code} - Failed to create agent: {response.text}")
return AgentState(**response.json())
def update_message(
self,
agent_id: str,
message_id: str,
role: Optional[MessageRole] = None,
text: Optional[str] = None,
name: Optional[str] = None,
tool_calls: Optional[List[ToolCall]] = None,
tool_call_id: Optional[str] = None,
) -> Message:
request = UpdateMessage(
id=message_id,
role=role,
text=text,
name=name,
tool_calls=tool_calls,
tool_call_id=tool_call_id,
)
response = requests.patch(
f"{self.base_url}/{self.api_prefix}/agents/{agent_id}/messages/{message_id}", json=request.model_dump(), headers=self.headers
)
if response.status_code != 200:
raise ValueError(f"Failed to update message: {response.text}")
return Message(**response.json())
def update_agent(
self,
agent_id: str,
name: Optional[str] = None,
description: Optional[str] = None,
system: Optional[str] = None,
tools: Optional[List[str]] = None,
metadata: Optional[Dict] = None,
llm_config: Optional[LLMConfig] = None,
embedding_config: Optional[EmbeddingConfig] = None,
message_ids: Optional[List[str]] = None,
memory: Optional[Memory] = None,
):
"""
Update an existing agent
Args:
agent_id (str): ID of the agent
name (str): Name of the agent
description (str): Description of the agent
system (str): System configuration
tools (List[str]): List of tools
metadata (Dict): Metadata
llm_config (LLMConfig): LLM configuration
embedding_config (EmbeddingConfig): Embedding configuration
message_ids (List[str]): List of message IDs
memory (Memory): Memory configuration
Returns:
agent_state (AgentState): State of the updated agent
"""
request = UpdateAgentState(
id=agent_id,
name=name,
system=system,
tools=tools,
description=description,
metadata_=metadata,
llm_config=llm_config,
embedding_config=embedding_config,
message_ids=message_ids,
memory=memory,
)
response = requests.patch(f"{self.base_url}/{self.api_prefix}/agents/{agent_id}", json=request.model_dump(), headers=self.headers)
if response.status_code != 200:
raise ValueError(f"Failed to update agent: {response.text}")
return AgentState(**response.json())
def get_tools_from_agent(self, agent_id: str) -> List[Tool]:
"""
Get tools to an existing agent
Args:
agent_id (str): ID of the agent
Returns:
List[Tool]: A List of Tool objs
"""
response = requests.get(f"{self.base_url}/{self.api_prefix}/agents/{agent_id}/tools", headers=self.headers)
if response.status_code != 200:
raise ValueError(f"Failed to get tools from agents: {response.text}")
return [Tool(**tool) for tool in response.json()]
def add_tool_to_agent(self, agent_id: str, tool_id: str):
"""
Add tool to an existing agent
Args:
agent_id (str): ID of the agent
tool_id (str): A tool id
Returns:
agent_state (AgentState): State of the updated agent
"""
response = requests.patch(f"{self.base_url}/{self.api_prefix}/agents/{agent_id}/add-tool/{tool_id}", headers=self.headers)
if response.status_code != 200:
raise ValueError(f"Failed to update agent: {response.text}")
return AgentState(**response.json())
def remove_tool_from_agent(self, agent_id: str, tool_id: str):
"""
Removes tools from an existing agent
Args:
agent_id (str): ID of the agent
tool_id (str): The tool id
Returns:
agent_state (AgentState): State of the updated agent
"""
response = requests.patch(f"{self.base_url}/{self.api_prefix}/agents/{agent_id}/remove-tool/{tool_id}", headers=self.headers)
if response.status_code != 200:
raise ValueError(f"Failed to update agent: {response.text}")
return AgentState(**response.json())
def rename_agent(self, agent_id: str, new_name: str):
"""
Rename an agent
Args:
agent_id (str): ID of the agent
new_name (str): New name for the agent
"""
return self.update_agent(agent_id, name=new_name)
def delete_agent(self, agent_id: str):
"""
Delete an agent
Args:
agent_id (str): ID of the agent to delete
"""
response = requests.delete(f"{self.base_url}/{self.api_prefix}/agents/{str(agent_id)}", headers=self.headers)
assert response.status_code == 200, f"Failed to delete agent: {response.text}"
def get_agent(self, agent_id: Optional[str] = None, agent_name: Optional[str] = None) -> AgentState:
"""
Get an agent's state by it's ID.
Args:
agent_id (str): ID of the agent
Returns:
agent_state (AgentState): State representation of the agent
"""
response = requests.get(f"{self.base_url}/{self.api_prefix}/agents/{agent_id}", headers=self.headers)
assert response.status_code == 200, f"Failed to get agent: {response.text}"
return AgentState(**response.json())
def get_agent_id(self, agent_name: str) -> AgentState:
"""
Get the ID of an agent by name (names are unique per user)
Args:
agent_name (str): Name of the agent
Returns:
agent_id (str): ID of the agent
"""
# TODO: implement this
raise NotImplementedError
# memory
def get_in_context_memory(self, agent_id: str) -> Memory:
"""
Get the in-contxt (i.e. core) memory of an agent
Args:
agent_id (str): ID of the agent
Returns:
memory (Memory): In-context memory of the agent
"""
response = requests.get(f"{self.base_url}/{self.api_prefix}/agents/{agent_id}/memory", headers=self.headers)
if response.status_code != 200:
raise ValueError(f"Failed to get in-context memory: {response.text}")
return Memory(**response.json())
def get_core_memory(self, agent_id: str) -> Memory:
return self.get_in_context_memory(agent_id)
def update_in_context_memory(self, agent_id: str, section: str, value: Union[List[str], str]) -> Memory:
"""
Update the in-context memory of an agent
Args:
agent_id (str): ID of the agent
Returns:
memory (Memory): The updated in-context memory of the agent
"""
memory_update_dict = {section: value}
response = requests.patch(
f"{self.base_url}/{self.api_prefix}/agents/{agent_id}/memory", json=memory_update_dict, headers=self.headers
)
if response.status_code != 200:
raise ValueError(f"Failed to update in-context memory: {response.text}")
return Memory(**response.json())
def get_archival_memory_summary(self, agent_id: str) -> ArchivalMemorySummary:
"""
Get a summary of the archival memory of an agent
Args:
agent_id (str): ID of the agent
Returns:
summary (ArchivalMemorySummary): Summary of the archival memory
"""
response = requests.get(f"{self.base_url}/{self.api_prefix}/agents/{agent_id}/memory/archival", headers=self.headers)
if response.status_code != 200:
raise ValueError(f"Failed to get archival memory summary: {response.text}")
return ArchivalMemorySummary(**response.json())
def get_recall_memory_summary(self, agent_id: str) -> RecallMemorySummary:
"""
Get a summary of the recall memory of an agent
Args:
agent_id (str): ID of the agent
Returns:
summary (RecallMemorySummary): Summary of the recall memory
"""
response = requests.get(f"{self.base_url}/{self.api_prefix}/agents/{agent_id}/memory/recall", headers=self.headers)
if response.status_code != 200:
raise ValueError(f"Failed to get recall memory summary: {response.text}")
return RecallMemorySummary(**response.json())
def get_in_context_messages(self, agent_id: str) -> List[Message]:
"""
Get in-context messages of an agent
Args:
agent_id (str): ID of the agent
Returns:
messages (List[Message]): List of in-context messages
"""
response = requests.get(f"{self.base_url}/{self.api_prefix}/agents/{agent_id}/memory/messages", headers=self.headers)
if response.status_code != 200:
raise ValueError(f"Failed to get in-context messages: {response.text}")
return [Message(**message) for message in response.json()]
# agent interactions
def user_message(self, agent_id: str, message: str, include_full_message: Optional[bool] = False) -> LettaResponse:
"""
Send a message to an agent as a user
Args:
agent_id (str): ID of the agent
message (str): Message to send
Returns:
response (LettaResponse): Response from the agent
"""
return self.send_message(agent_id, message, role="user", include_full_message=include_full_message)
def save(self):
raise NotImplementedError
# archival memory
def get_archival_memory(
self, agent_id: str, before: Optional[str] = None, after: Optional[str] = None, limit: Optional[int] = 1000
) -> List[Passage]:
"""
Get archival memory from an agent with pagination.
Args:
agent_id (str): ID of the agent
before (str): Get memories before a certain time
after (str): Get memories after a certain time
limit (int): Limit number of memories
Returns:
passages (List[Passage]): List of passages
"""
params = {"limit": limit}
if before:
params["before"] = str(before)
if after:
params["after"] = str(after)
response = requests.get(f"{self.base_url}/{self.api_prefix}/agents/{str(agent_id)}/archival", params=params, headers=self.headers)
assert response.status_code == 200, f"Failed to get archival memory: {response.text}"
return [Passage(**passage) for passage in response.json()]
def insert_archival_memory(self, agent_id: str, memory: str) -> List[Passage]:
"""
Insert archival memory into an agent
Args:
agent_id (str): ID of the agent
memory (str): Memory string to insert
Returns:
passages (List[Passage]): List of inserted passages
"""
request = CreateArchivalMemory(text=memory)
response = requests.post(
f"{self.base_url}/{self.api_prefix}/agents/{agent_id}/archival", headers=self.headers, json=request.model_dump()
)
if response.status_code != 200:
raise ValueError(f"Failed to insert archival memory: {response.text}")
return [Passage(**passage) for passage in response.json()]
def delete_archival_memory(self, agent_id: str, memory_id: str):
"""
Delete archival memory from an agent
Args:
agent_id (str): ID of the agent
memory_id (str): ID of the memory
"""
response = requests.delete(f"{self.base_url}/{self.api_prefix}/agents/{agent_id}/archival/{memory_id}", headers=self.headers)
assert response.status_code == 200, f"Failed to delete archival memory: {response.text}"
# messages (recall memory)
def get_messages(
self, agent_id: str, before: Optional[str] = None, after: Optional[str] = None, limit: Optional[int] = 1000
) -> List[Message]:
"""
Get messages from an agent with pagination.
Args:
agent_id (str): ID of the agent
before (str): Get messages before a certain time
after (str): Get messages after a certain time
limit (int): Limit number of messages
Returns:
messages (List[Message]): List of messages
"""
params = {"before": before, "after": after, "limit": limit, "msg_object": True}
response = requests.get(f"{self.base_url}/{self.api_prefix}/agents/{agent_id}/messages", params=params, headers=self.headers)
if response.status_code != 200:
raise ValueError(f"Failed to get messages: {response.text}")
return [Message(**message) for message in response.json()]
def send_message(
self,
agent_id: str,
message: str,
role: str,
name: Optional[str] = None,
stream_steps: bool = False,
stream_tokens: bool = False,
include_full_message: Optional[bool] = False,
) -> Union[LettaResponse, Generator[LettaStreamingResponse, None, None]]:
"""
Send a message to an agent
Args:
message (str): Message to send
role (str): Role of the message
agent_id (str): ID of the agent
name(str): Name of the sender
stream (bool): Stream the response (default: `False`)
stream_tokens (bool): Stream tokens (default: `False`)
Returns:
response (LettaResponse): Response from the agent
"""
# TODO: implement include_full_message
messages = [MessageCreate(role=MessageRole(role), text=message, name=name)]
# TODO: figure out how to handle stream_steps and stream_tokens
# When streaming steps is True, stream_tokens must be False
request = LettaRequest(messages=messages, stream_steps=stream_steps, stream_tokens=stream_tokens, return_message_object=True)
if stream_tokens or stream_steps:
from letta.client.streaming import _sse_post
request.return_message_object = False
return _sse_post(f"{self.base_url}/{self.api_prefix}/agents/{agent_id}/messages", request.model_dump(), self.headers)
else:
response = requests.post(
f"{self.base_url}/{self.api_prefix}/agents/{agent_id}/messages", json=request.model_dump(), headers=self.headers
)
if response.status_code != 200:
raise ValueError(f"Failed to send message: {response.text}")
response = LettaResponse(**response.json())
# simplify messages
if not include_full_message:
messages = []
for m in response.messages:
assert isinstance(m, Message)
messages += m.to_letta_message()
response.messages = messages
return response
# humans / personas
def list_blocks(self, label: Optional[str] = None, templates_only: Optional[bool] = True) -> List[Block]:
params = {"label": label, "templates_only": templates_only}
response = requests.get(f"{self.base_url}/{self.api_prefix}/blocks", params=params, headers=self.headers)
if response.status_code != 200:
raise ValueError(f"Failed to list blocks: {response.text}")
if label == "human":
return [Human(**human) for human in response.json()]
elif label == "persona":
return [Persona(**persona) for persona in response.json()]
else:
return [Block(**block) for block in response.json()]
def create_block(self, label: str, name: str, text: str) -> Block: #
request = CreateBlock(label=label, name=name, value=text)
response = requests.post(f"{self.base_url}/{self.api_prefix}/blocks", json=request.model_dump(), headers=self.headers)
if response.status_code != 200:
raise ValueError(f"Failed to create block: {response.text}")
if request.label == "human":
return Human(**response.json())
elif request.label == "persona":
return Persona(**response.json())
else:
return Block(**response.json())
def update_block(self, block_id: str, name: Optional[str] = None, text: Optional[str] = None) -> Block:
request = UpdateBlock(id=block_id, name=name, value=text)
response = requests.post(f"{self.base_url}/{self.api_prefix}/blocks/{block_id}", json=request.model_dump(), headers=self.headers)
if response.status_code != 200:
raise ValueError(f"Failed to update block: {response.text}")
return Block(**response.json())
def get_block(self, block_id: str) -> Block:
response = requests.get(f"{self.base_url}/{self.api_prefix}/blocks/{block_id}", headers=self.headers)
if response.status_code == 404:
return None
elif response.status_code != 200:
raise ValueError(f"Failed to get block: {response.text}")
return Block(**response.json())
def get_block_id(self, name: str, label: str) -> str:
params = {"name": name, "label": label}
response = requests.get(f"{self.base_url}/{self.api_prefix}/blocks", params=params, headers=self.headers)
if response.status_code != 200:
raise ValueError(f"Failed to get block ID: {response.text}")
blocks = [Block(**block) for block in response.json()]
if len(blocks) == 0:
return None
elif len(blocks) > 1:
raise ValueError(f"Multiple blocks found with name {name}")
return blocks[0].id
def delete_block(self, id: str) -> Block:
response = requests.delete(f"{self.base_url}/{self.api_prefix}/blocks/{id}", headers=self.headers)
assert response.status_code == 200, f"Failed to delete block: {response.text}"
if response.status_code != 200:
raise ValueError(f"Failed to delete block: {response.text}")
return Block(**response.json())
def list_humans(self):
"""
List available human block templates
Returns:
humans (List[Human]): List of human blocks
"""
blocks = self.list_blocks(label="human")
return [Human(**block.model_dump()) for block in blocks]
def create_human(self, name: str, text: str) -> Human:
"""
Create a human block template (saved human string to pre-fill `ChatMemory`)
Args:
name (str): Name of the human block
text (str): Text of the human block
Returns:
human (Human): Human block
"""
return self.create_block(label="human", name=name, text=text)
def update_human(self, human_id: str, name: Optional[str] = None, text: Optional[str] = None) -> Human:
"""
Update a human block template
Args:
human_id (str): ID of the human block
text (str): Text of the human block
Returns:
human (Human): Updated human block
"""
request = UpdateHuman(id=human_id, name=name, value=text)
response = requests.post(f"{self.base_url}/{self.api_prefix}/blocks/{human_id}", json=request.model_dump(), headers=self.headers)
if response.status_code != 200:
raise ValueError(f"Failed to update human: {response.text}")
return Human(**response.json())
def list_personas(self):
"""
List available persona block templates
Returns:
personas (List[Persona]): List of persona blocks
"""
blocks = self.list_blocks(label="persona")
return [Persona(**block.model_dump()) for block in blocks]
def create_persona(self, name: str, text: str) -> Persona:
"""
Create a persona block template (saved persona string to pre-fill `ChatMemory`)
Args:
name (str): Name of the persona block
text (str): Text of the persona block
Returns:
persona (Persona): Persona block
"""
return self.create_block(label="persona", name=name, text=text)
def update_persona(self, persona_id: str, name: Optional[str] = None, text: Optional[str] = None) -> Persona:
"""
Update a persona block template
Args:
persona_id (str): ID of the persona block
text (str): Text of the persona block
Returns:
persona (Persona): Updated persona block
"""
request = UpdatePersona(id=persona_id, name=name, value=text)
response = requests.post(f"{self.base_url}/{self.api_prefix}/blocks/{persona_id}", json=request.model_dump(), headers=self.headers)
if response.status_code != 200:
raise ValueError(f"Failed to update persona: {response.text}")
return Persona(**response.json())
def get_persona(self, persona_id: str) -> Persona:
"""
Get a persona block template
Args:
id (str): ID of the persona block
Returns:
persona (Persona): Persona block
"""
return self.get_block(persona_id)
def get_persona_id(self, name: str) -> str:
"""
Get the ID of a persona block template
Args:
name (str): Name of the persona block
Returns:
id (str): ID of the persona block
"""
return self.get_block_id(name, "persona")
def delete_persona(self, persona_id: str) -> Persona:
"""
Delete a persona block template
Args:
id (str): ID of the persona block
"""
return self.delete_block(persona_id)
def get_human(self, human_id: str) -> Human:
"""
Get a human block template
Args:
id (str): ID of the human block
Returns:
human (Human): Human block
"""
return self.get_block(human_id)
def get_human_id(self, name: str) -> str:
"""
Get the ID of a human block template
Args:
name (str): Name of the human block
Returns:
id (str): ID of the human block
"""
return self.get_block_id(name, "human")
def delete_human(self, human_id: str) -> Human:
"""
Delete a human block template
Args:
id (str): ID of the human block
"""
return self.delete_block(human_id)
# sources
def get_source(self, source_id: str) -> Source:
"""
Get a source given the ID.
Args:
source_id (str): ID of the source
Returns:
source (Source): Source
"""
response = requests.get(f"{self.base_url}/{self.api_prefix}/sources/{source_id}", headers=self.headers)
if response.status_code != 200:
raise ValueError(f"Failed to get source: {response.text}")
return Source(**response.json())
def get_source_id(self, source_name: str) -> str:
"""
Get the ID of a source
Args:
source_name (str): Name of the source
Returns:
source_id (str): ID of the source
"""
response = requests.get(f"{self.base_url}/{self.api_prefix}/sources/name/{source_name}", headers=self.headers)
if response.status_code != 200:
raise ValueError(f"Failed to get source ID: {response.text}")
return response.json()
def list_sources(self) -> List[Source]:
"""
List available sources
Returns:
sources (List[Source]): List of sources
"""
response = requests.get(f"{self.base_url}/{self.api_prefix}/sources", headers=self.headers)
if response.status_code != 200:
raise ValueError(f"Failed to list sources: {response.text}")
return [Source(**source) for source in response.json()]
def delete_source(self, source_id: str):
"""
Delete a source
Args:
source_id (str): ID of the source
"""
response = requests.delete(f"{self.base_url}/{self.api_prefix}/sources/{str(source_id)}", headers=self.headers)
assert response.status_code == 200, f"Failed to delete source: {response.text}"
def get_job(self, job_id: str) -> Job:
response = requests.get(f"{self.base_url}/{self.api_prefix}/jobs/{job_id}", headers=self.headers)
if response.status_code != 200:
raise ValueError(f"Failed to get job: {response.text}")
return Job(**response.json())
def delete_job(self, job_id: str) -> Job:
response = requests.delete(f"{self.base_url}/{self.api_prefix}/jobs/{job_id}", headers=self.headers)
if response.status_code != 200:
raise ValueError(f"Failed to delete job: {response.text}")
return Job(**response.json())
def list_jobs(self):
response = requests.get(f"{self.base_url}/{self.api_prefix}/jobs", headers=self.headers)
return [Job(**job) for job in response.json()]
def list_active_jobs(self):
response = requests.get(f"{self.base_url}/{self.api_prefix}/jobs/active", headers=self.headers)
return [Job(**job) for job in response.json()]
def load_data(self, connector: DataConnector, source_name: str):
raise NotImplementedError
def load_file_to_source(self, filename: str, source_id: str, blocking=True):
"""
Load a file into a source
Args:
filename (str): Name of the file
source_id (str): ID of the source
blocking (bool): Block until the job is complete
Returns:
job (Job): Data loading job including job status and metadata
"""
files = {"file": open(filename, "rb")}
# create job
response = requests.post(f"{self.base_url}/{self.api_prefix}/sources/{source_id}/upload", files=files, headers=self.headers)
if response.status_code != 200:
raise ValueError(f"Failed to upload file to source: {response.text}")
job = Job(**response.json())
if blocking:
# wait until job is completed
while True:
job = self.get_job(job.id)
if job.status == JobStatus.completed:
break
elif job.status == JobStatus.failed:
raise ValueError(f"Job failed: {job.metadata}")
time.sleep(1)
return job
def delete_file_from_source(self, source_id: str, file_id: str) -> None:
response = requests.delete(f"{self.base_url}/{self.api_prefix}/sources/{source_id}/{file_id}", headers=self.headers)
if response.status_code not in [200, 204]:
raise ValueError(f"Failed to delete tool: {response.text}")
def create_source(self, name: str) -> Source:
"""
Create a source
Args:
name (str): Name of the source
Returns:
source (Source): Created source
"""
payload = {"name": name}
response = requests.post(f"{self.base_url}/{self.api_prefix}/sources", json=payload, headers=self.headers)
response_json = response.json()
return Source(**response_json)
def list_attached_sources(self, agent_id: str) -> List[Source]:
"""
List sources attached to an agent
Args:
agent_id (str): ID of the agent
Returns:
sources (List[Source]): List of sources
"""
response = requests.get(f"{self.base_url}/{self.api_prefix}/agents/{agent_id}/sources", headers=self.headers)
if response.status_code != 200:
raise ValueError(f"Failed to list attached sources: {response.text}")
return [Source(**source) for source in response.json()]
def list_files_from_source(self, source_id: str, limit: int = 1000, cursor: Optional[str] = None) -> List[FileMetadata]:
"""
List files from source with pagination support.
Args:
source_id (str): ID of the source
limit (int): Number of files to return
cursor (Optional[str]): Pagination cursor for fetching the next page
Returns:
List[FileMetadata]: List of files
"""
# Prepare query parameters for pagination
params = {"limit": limit, "cursor": cursor}
# Make the request to the FastAPI endpoint
response = requests.get(f"{self.base_url}/{self.api_prefix}/sources/{source_id}/files", headers=self.headers, params=params)
if response.status_code != 200:
raise ValueError(f"Failed to list files with source id {source_id}: [{response.status_code}] {response.text}")
# Parse the JSON response
return [FileMetadata(**metadata) for metadata in response.json()]
def update_source(self, source_id: str, name: Optional[str] = None) -> Source:
"""
Update a source
Args:
source_id (str): ID of the source
name (str): Name of the source
Returns:
source (Source): Updated source
"""
request = SourceUpdate(id=source_id, name=name)
response = requests.patch(f"{self.base_url}/{self.api_prefix}/sources/{source_id}", json=request.model_dump(), headers=self.headers)
if response.status_code != 200:
raise ValueError(f"Failed to update source: {response.text}")
return Source(**response.json())
def attach_source_to_agent(self, source_id: str, agent_id: str):
"""
Attach a source to an agent
Args:
agent_id (str): ID of the agent
source_id (str): ID of the source
source_name (str): Name of the source
"""
params = {"agent_id": agent_id}
response = requests.post(f"{self.base_url}/{self.api_prefix}/sources/{source_id}/attach", params=params, headers=self.headers)
assert response.status_code == 200, f"Failed to attach source to agent: {response.text}"
def detach_source(self, source_id: str, agent_id: str):
"""Detach a source from an agent"""
params = {"agent_id": str(agent_id)}
response = requests.post(f"{self.base_url}/{self.api_prefix}/sources/{source_id}/detach", params=params, headers=self.headers)
assert response.status_code == 200, f"Failed to detach source from agent: {response.text}"
return Source(**response.json())
# server configuration commands
def list_models(self):
"""
List available LLM models
Returns:
models (List[LLMConfig]): List of LLM models
"""
response = requests.get(f"{self.base_url}/{self.api_prefix}/models", headers=self.headers)
if response.status_code != 200:
raise ValueError(f"Failed to list models: {response.text}")
return [LLMConfig(**model) for model in response.json()]
def list_embedding_models(self):
"""
List available embedding models
Returns:
models (List[EmbeddingConfig]): List of embedding models
"""
response = requests.get(f"{self.base_url}/{self.api_prefix}/models/embedding", headers=self.headers)
if response.status_code != 200:
raise ValueError(f"Failed to list embedding models: {response.text}")
return [EmbeddingConfig(**model) for model in response.json()]
# tools
def get_tool_id(self, tool_name: str):
"""
Get the ID of a tool
Args:
name (str): Name of the tool
Returns:
id (str): ID of the tool (`None` if not found)
"""
response = requests.get(f"{self.base_url}/{self.api_prefix}/tools/name/{tool_name}", headers=self.headers)
if response.status_code == 404:
return None
elif response.status_code != 200:
raise ValueError(f"Failed to get tool: {response.text}")
return response.json()
def create_tool(
self,
func: Callable,
name: Optional[str] = None,
update: Optional[bool] = True, # TODO: actually use this
tags: Optional[List[str]] = None,
) -> Tool:
"""
Create a tool. This stores the source code of function on the server, so that the server can execute the function and generate an OpenAI JSON schemas for it when using with an agent.
Args:
func (callable): The function to create a tool for.
name: (str): Name of the tool (must be unique per-user.)
tags (Optional[List[str]], optional): Tags for the tool. Defaults to None.
update (bool, optional): Update the tool if it already exists. Defaults to True.
Returns:
tool (Tool): The created tool.
"""
# TODO: check tool update code
# TODO: check if tool already exists
# TODO: how to load modules?
# parse source code/schema
source_code = parse_source_code(func)
source_type = "python"
# TODO: Check if tool already exists
# if name:
# tool_id = self.get_tool_id(tool_name=name)
# if tool_id:
# raise ValueError(f"Tool with name {name} (id={tool_id}) already exists")
# call server function
request = ToolCreate(source_type=source_type, source_code=source_code, name=name, tags=tags)
response = requests.post(f"{self.base_url}/{self.api_prefix}/tools", json=request.model_dump(), headers=self.headers)
if response.status_code != 200:
raise ValueError(f"Failed to create tool: {response.text}")
return Tool(**response.json())
def update_tool(
self,
id: str,
name: Optional[str] = None,
func: Optional[Callable] = None,
tags: Optional[List[str]] = None,
) -> Tool:
"""
Update a tool with provided parameters (name, func, tags)
Args:
id (str): ID of the tool
name (str): Name of the tool
func (callable): Function to wrap in a tool
tags (List[str]): Tags for the tool
Returns:
tool (Tool): Updated tool
"""
if func:
source_code = parse_source_code(func)
else:
source_code = None
source_type = "python"
request = ToolUpdate(id=id, source_type=source_type, source_code=source_code, tags=tags, name=name)
response = requests.patch(f"{self.base_url}/{self.api_prefix}/tools/{id}", json=request.model_dump(), headers=self.headers)
if response.status_code != 200:
raise ValueError(f"Failed to update tool: {response.text}")
return Tool(**response.json())
# def create_tool(
# self,
# func,
# name: Optional[str] = None,
# update: Optional[bool] = True, # TODO: actually use this
# tags: Optional[List[str]] = None,
# ):
# """Create a tool
# Args:
# func (callable): The function to create a tool for.
# tags (Optional[List[str]], optional): Tags for the tool. Defaults to None.
# update (bool, optional): Update the tool if it already exists. Defaults to True.
# Returns:
# Tool object
# """
# # TODO: check if tool already exists
# # TODO: how to load modules?
# # parse source code/schema
# source_code = parse_source_code(func)
# json_schema = generate_schema(func, name)
# source_type = "python"
# json_schema["name"]
# # create data
# data = {"source_code": source_code, "source_type": source_type, "tags": tags, "json_schema": json_schema, "update": update}
# try:
# CreateToolRequest(**data) # validate data
# except Exception as e:
# raise ValueError(f"Failed to create tool: {e}, invalid input {data}")
# # make REST request
# response = requests.post(f"{self.base_url}/{self.api_prefix}/tools", json=data, headers=self.headers)
# if response.status_code != 200:
# raise ValueError(f"Failed to create tool: {response.text}")
# return ToolModel(**response.json())
def list_tools(self, cursor: Optional[str] = None, limit: Optional[int] = 50) -> List[Tool]:
"""
List available tools for the user.
Returns:
tools (List[Tool]): List of tools
"""
params = {}
if cursor:
params["cursor"] = str(cursor)
if limit:
params["limit"] = limit
response = requests.get(f"{self.base_url}/{self.api_prefix}/tools", params=params, headers=self.headers)
if response.status_code != 200:
raise ValueError(f"Failed to list tools: {response.text}")
return [Tool(**tool) for tool in response.json()]
def delete_tool(self, name: str):
"""
Delete a tool given the ID.
Args:
id (str): ID of the tool
"""
response = requests.delete(f"{self.base_url}/{self.api_prefix}/tools/{name}", headers=self.headers)
if response.status_code != 200:
raise ValueError(f"Failed to delete tool: {response.text}")
def get_tool(self, id: str) -> Optional[Tool]:
"""
Get a tool give its ID.
Args:
id (str): ID of the tool
Returns:
tool (Tool): Tool
"""
response = requests.get(f"{self.base_url}/{self.api_prefix}/tools/{id}", headers=self.headers)
if response.status_code == 404:
return None
elif response.status_code != 200:
raise ValueError(f"Failed to get tool: {response.text}")
return Tool(**response.json())
def get_tool_id(self, name: str) -> Optional[str]:
"""
Get a tool ID by its name.
Args:
id (str): ID of the tool
Returns:
tool (Tool): Tool
"""
response = requests.get(f"{self.base_url}/{self.api_prefix}/tools/name/{name}", headers=self.headers)
if response.status_code == 404:
return None
elif response.status_code != 200:
raise ValueError(f"Failed to get tool: {response.text}")
return response.json()
def set_default_llm_config(self, llm_config: LLMConfig):
"""
Set the default LLM configuration
Args:
llm_config (LLMConfig): LLM configuration
"""
self._default_llm_config = llm_config
def set_default_embedding_config(self, embedding_config: EmbeddingConfig):
"""
Set the default embedding configuration
Args:
embedding_config (EmbeddingConfig): Embedding configuration
"""
self._default_embedding_config = embedding_config
def list_llm_configs(self) -> List[LLMConfig]:
"""
List available LLM configurations
Returns:
configs (List[LLMConfig]): List of LLM configurations
"""
response = requests.get(f"{self.base_url}/{self.api_prefix}/models", headers=self.headers)
if response.status_code != 200:
raise ValueError(f"Failed to list LLM configs: {response.text}")
return [LLMConfig(**config) for config in response.json()]
def list_embedding_configs(self) -> List[EmbeddingConfig]:
"""
List available embedding configurations
Returns:
configs (List[EmbeddingConfig]): List of embedding configurations
"""
response = requests.get(f"{self.base_url}/{self.api_prefix}/models/embedding", headers=self.headers)
if response.status_code != 200:
raise ValueError(f"Failed to list embedding configs: {response.text}")
return [EmbeddingConfig(**config) for config in response.json()]
class LocalClient(AbstractClient):
"""
A local client for Letta, which corresponds to a single user.
Attributes:
auto_save (bool): Whether to automatically save changes.
user_id (str): The user ID.
debug (bool): Whether to print debug information.
interface (QueuingInterface): The interface for the client.
server (SyncServer): The server for the client.
"""
def __init__(
self,
auto_save: bool = False,
user_id: Optional[str] = None,
debug: bool = False,
default_llm_config: Optional[LLMConfig] = None,
default_embedding_config: Optional[EmbeddingConfig] = None,
):
"""
Initializes a new instance of Client class.
Args:
auto_save (bool): Whether to automatically save changes.
user_id (str): The user ID.
debug (bool): Whether to print debug information.
"""
self.auto_save = auto_save
# set logging levels
letta.utils.DEBUG = debug
logging.getLogger().setLevel(logging.CRITICAL)
# save default model config
self._default_llm_config = default_llm_config
self._default_embedding_config = default_embedding_config
# create server
self.interface = QueuingInterface(debug=debug)
self.server = SyncServer(default_interface_factory=lambda: self.interface)
# save user_id that `LocalClient` is associated with
if user_id:
self.user_id = user_id
else:
# get default user
self.user_id = self.server.get_default_user().id
# agents
def list_agents(self) -> List[AgentState]:
self.interface.clear()
# TODO: fix the server function
# return self.server.list_agents(user_id=self.user_id)
return self.server.ms.list_agents(user_id=self.user_id)
def agent_exists(self, agent_id: Optional[str] = None, agent_name: Optional[str] = None) -> bool:
"""
Check if an agent exists
Args:
agent_id (str): ID of the agent
agent_name (str): Name of the agent
Returns:
exists (bool): `True` if the agent exists, `False` otherwise
"""
if not (agent_id or agent_name):
raise ValueError(f"Either agent_id or agent_name must be provided")
if agent_id and agent_name:
raise ValueError(f"Only one of agent_id or agent_name can be provided")
existing = self.list_agents()
if agent_id:
return str(agent_id) in [str(agent.id) for agent in existing]
else:
return agent_name in [str(agent.name) for agent in existing]
def create_agent(
self,
name: Optional[str] = None,
# agent config
agent_type: Optional[AgentType] = AgentType.memgpt_agent,
# model configs
embedding_config: EmbeddingConfig = None,
llm_config: LLMConfig = None,
# memory
memory: Memory = ChatMemory(human=get_human_text(DEFAULT_HUMAN), persona=get_persona_text(DEFAULT_PERSONA)),
# system
system: Optional[str] = None,
# tools
tools: Optional[List[str]] = None,
include_base_tools: Optional[bool] = True,
# metadata
metadata: Optional[Dict] = {"human:": DEFAULT_HUMAN, "persona": DEFAULT_PERSONA},
description: Optional[str] = None,
) -> AgentState:
"""Create an agent
Args:
name (str): Name of the agent
embedding_config (EmbeddingConfig): Embedding configuration
llm_config (LLMConfig): LLM configuration
memory (Memory): Memory configuration
system (str): System configuration
tools (List[str]): List of tools
include_base_tools (bool): Include base tools
metadata (Dict): Metadata
description (str): Description
Returns:
agent_state (AgentState): State of the created agent
"""
if name and self.agent_exists(agent_name=name):
raise ValueError(f"Agent with name {name} already exists (user_id={self.user_id})")
# construct list of tools
tool_names = []
if tools:
tool_names += tools
if include_base_tools:
tool_names += BASE_TOOLS
# add memory tools
memory_functions = get_memory_functions(memory)
for func_name, func in memory_functions.items():
tool = self.create_tool(func, name=func_name, tags=["memory", "letta-base"], update=True)
tool_names.append(tool.name)
self.interface.clear()
# check if default configs are provided
assert embedding_config or self._default_embedding_config, f"Embedding config must be provided"
assert llm_config or self._default_llm_config, f"LLM config must be provided"
# create agent
agent_state = self.server.create_agent(
CreateAgent(
name=name,
description=description,
metadata_=metadata,
memory=memory,
tools=tool_names,
system=system,
agent_type=agent_type,
llm_config=llm_config if llm_config else self._default_llm_config,
embedding_config=embedding_config if embedding_config else self._default_embedding_config,
),
user_id=self.user_id,
)
return agent_state
def update_message(
self,
agent_id: str,
message_id: str,
role: Optional[MessageRole] = None,
text: Optional[str] = None,
name: Optional[str] = None,
tool_calls: Optional[List[ToolCall]] = None,
tool_call_id: Optional[str] = None,
) -> Message:
message = self.server.update_agent_message(
agent_id=agent_id,
request=UpdateMessage(
id=message_id,
role=role,
text=text,
name=name,
tool_calls=tool_calls,
tool_call_id=tool_call_id,
),
)
return message
def update_agent(
self,
agent_id: str,
name: Optional[str] = None,
description: Optional[str] = None,
system: Optional[str] = None,
tools: Optional[List[str]] = None,
metadata: Optional[Dict] = None,
llm_config: Optional[LLMConfig] = None,
embedding_config: Optional[EmbeddingConfig] = None,
message_ids: Optional[List[str]] = None,
memory: Optional[Memory] = None,
):
"""
Update an existing agent
Args:
agent_id (str): ID of the agent
name (str): Name of the agent
description (str): Description of the agent
system (str): System configuration
tools (List[str]): List of tools
metadata (Dict): Metadata
llm_config (LLMConfig): LLM configuration
embedding_config (EmbeddingConfig): Embedding configuration
message_ids (List[str]): List of message IDs
memory (Memory): Memory configuration
Returns:
agent_state (AgentState): State of the updated agent
"""
self.interface.clear()
agent_state = self.server.update_agent(
UpdateAgentState(
id=agent_id,
name=name,
system=system,
tools=tools,
description=description,
metadata_=metadata,
llm_config=llm_config,
embedding_config=embedding_config,
message_ids=message_ids,
memory=memory,
),
user_id=self.user_id,
)
return agent_state
def get_tools_from_agent(self, agent_id: str) -> List[Tool]:
"""
Get tools from an existing agent.
Args:
agent_id (str): ID of the agent
Returns:
List[Tool]: A list of Tool objs
"""
self.interface.clear()
return self.server.get_tools_from_agent(agent_id=agent_id, user_id=self.user_id)
def add_tool_to_agent(self, agent_id: str, tool_id: str):
"""
Add tool to an existing agent
Args:
agent_id (str): ID of the agent
tool_id (str): A tool id
Returns:
agent_state (AgentState): State of the updated agent
"""
self.interface.clear()
agent_state = self.server.add_tool_to_agent(agent_id=agent_id, tool_id=tool_id, user_id=self.user_id)
return agent_state
def remove_tool_from_agent(self, agent_id: str, tool_id: str):
"""
Removes tools from an existing agent
Args:
agent_id (str): ID of the agent
tool_id (str): The tool id
Returns:
agent_state (AgentState): State of the updated agent
"""
self.interface.clear()
agent_state = self.server.remove_tool_from_agent(agent_id=agent_id, tool_id=tool_id, user_id=self.user_id)
return agent_state
def rename_agent(self, agent_id: str, new_name: str):
"""
Rename an agent
Args:
agent_id (str): ID of the agent
new_name (str): New name for the agent
"""
self.update_agent(agent_id, name=new_name)
def delete_agent(self, agent_id: str):
"""
Delete an agent
Args:
agent_id (str): ID of the agent to delete
"""
self.server.delete_agent(user_id=self.user_id, agent_id=agent_id)
def get_agent_by_name(self, agent_name: str, user_id: str) -> AgentState:
"""
Get an agent by its name
Args:
agent_name (str): Name of the agent
Returns:
agent_state (AgentState): State of the agent
"""
self.interface.clear()
return self.server.get_agent(agent_name=agent_name, user_id=user_id, agent_id=None)
def get_agent(self, agent_id: str) -> AgentState:
"""
Get an agent's state by its ID.
Args:
agent_id (str): ID of the agent
Returns:
agent_state (AgentState): State representation of the agent
"""
# TODO: include agent_name
self.interface.clear()
return self.server.get_agent_state(user_id=self.user_id, agent_id=agent_id)
def get_agent_id(self, agent_name: str) -> Optional[str]:
"""
Get the ID of an agent by name (names are unique per user)
Args:
agent_name (str): Name of the agent
Returns:
agent_id (str): ID of the agent
"""
self.interface.clear()
assert agent_name, f"Agent name must be provided"
return self.server.get_agent_id(name=agent_name, user_id=self.user_id)
# memory
def get_in_context_memory(self, agent_id: str) -> Memory:
"""
Get the in-context (i.e. core) memory of an agent
Args:
agent_id (str): ID of the agent
Returns:
memory (Memory): In-context memory of the agent
"""
memory = self.server.get_agent_memory(agent_id=agent_id)
return memory
def get_core_memory(self, agent_id: str) -> Memory:
return self.get_in_context_memory(agent_id)
def update_in_context_memory(self, agent_id: str, section: str, value: Union[List[str], str]) -> Memory:
"""
Update the in-context memory of an agent
Args:
agent_id (str): ID of the agent
Returns:
memory (Memory): The updated in-context memory of the agent
"""
# TODO: implement this (not sure what it should look like)
memory = self.server.update_agent_core_memory(user_id=self.user_id, agent_id=agent_id, new_memory_contents={section: value})
return memory
def get_archival_memory_summary(self, agent_id: str) -> ArchivalMemorySummary:
"""
Get a summary of the archival memory of an agent
Args:
agent_id (str): ID of the agent
Returns:
summary (ArchivalMemorySummary): Summary of the archival memory
"""
return self.server.get_archival_memory_summary(agent_id=agent_id)
def get_recall_memory_summary(self, agent_id: str) -> RecallMemorySummary:
"""
Get a summary of the recall memory of an agent
Args:
agent_id (str): ID of the agent
Returns:
summary (RecallMemorySummary): Summary of the recall memory
"""
return self.server.get_recall_memory_summary(agent_id=agent_id)
def get_in_context_messages(self, agent_id: str) -> List[Message]:
"""
Get in-context messages of an agent
Args:
agent_id (str): ID of the agent
Returns:
messages (List[Message]): List of in-context messages
"""
return self.server.get_in_context_messages(agent_id=agent_id)
# agent interactions
def send_messages(
self,
agent_id: str,
messages: List[Union[Message | MessageCreate]],
include_full_message: Optional[bool] = False,
):
"""
Send pre-packed messages to an agent.
Args:
agent_id (str): ID of the agent
messages (List[Union[Message | MessageCreate]]): List of messages to send
Returns:
response (LettaResponse): Response from the agent
"""
self.interface.clear()
usage = self.server.send_messages(user_id=self.user_id, agent_id=agent_id, messages=messages)
# auto-save
if self.auto_save:
self.save()
# format messages
messages = self.interface.to_list()
if include_full_message:
letta_messages = messages
else:
letta_messages = []
for m in messages:
letta_messages += m.to_letta_message()
return LettaResponse(messages=letta_messages, usage=usage)
def send_message(
self,
message: str,
role: str,
name: Optional[str] = None,
agent_id: Optional[str] = None,
agent_name: Optional[str] = None,
stream_steps: bool = False,
stream_tokens: bool = False,
include_full_message: Optional[bool] = False,
) -> LettaResponse:
"""
Send a message to an agent
Args:
message (str): Message to send
role (str): Role of the message
agent_id (str): ID of the agent
name(str): Name of the sender
stream (bool): Stream the response (default: `False`)
Returns:
response (LettaResponse): Response from the agent
"""
if not agent_id:
# lookup agent by name
assert agent_name, f"Either agent_id or agent_name must be provided"
agent_id = self.get_agent_id(agent_name=agent_name)
assert agent_id, f"Agent with name {agent_name} not found"
if stream_steps or stream_tokens:
# TODO: implement streaming with stream=True/False
raise NotImplementedError
self.interface.clear()
usage = self.server.send_messages(
user_id=self.user_id,
agent_id=agent_id,
messages=[MessageCreate(role=MessageRole(role), text=message, name=name)],
)
# auto-save
if self.auto_save:
self.save()
## TODO: need to make sure date/timestamp is propely passed
## TODO: update self.interface.to_list() to return actual Message objects
## here, the message objects will have faulty created_by timestamps
# messages = self.interface.to_list()
# for m in messages:
# assert isinstance(m, Message), f"Expected Message object, got {type(m)}"
# letta_messages = []
# for m in messages:
# letta_messages += m.to_letta_message()
# return LettaResponse(messages=letta_messages, usage=usage)
# format messages
messages = self.interface.to_list()
if include_full_message:
letta_messages = messages
else:
letta_messages = []
for m in messages:
letta_messages += m.to_letta_message()
return LettaResponse(messages=letta_messages, usage=usage)
def user_message(self, agent_id: str, message: str, include_full_message: Optional[bool] = False) -> LettaResponse:
"""
Send a message to an agent as a user
Args:
agent_id (str): ID of the agent
message (str): Message to send
Returns:
response (LettaResponse): Response from the agent
"""
self.interface.clear()
return self.send_message(role="user", agent_id=agent_id, message=message, include_full_message=include_full_message)
def run_command(self, agent_id: str, command: str) -> LettaResponse:
"""
Run a command on the agent
Args:
agent_id (str): The agent ID
command (str): The command to run
Returns:
LettaResponse: The response from the agent
"""
self.interface.clear()
usage = self.server.run_command(user_id=self.user_id, agent_id=agent_id, command=command)
# auto-save
if self.auto_save:
self.save()
# NOTE: messages/usage may be empty, depending on the command
return LettaResponse(messages=self.interface.to_list(), usage=usage)
def save(self):
self.server.save_agents()
# archival memory
# humans / personas
def get_block_id(self, name: str, label: str) -> str:
block = self.server.get_blocks(name=name, label=label, user_id=self.user_id, template=True)
if not block:
return None
return block[0].id
def create_human(self, name: str, text: str):
"""
Create a human block template (saved human string to pre-fill `ChatMemory`)
Args:
name (str): Name of the human block
text (str): Text of the human block
Returns:
human (Human): Human block
"""
return self.server.create_block(CreateHuman(name=name, value=text, user_id=self.user_id), user_id=self.user_id)
def create_persona(self, name: str, text: str):
"""
Create a persona block template (saved persona string to pre-fill `ChatMemory`)
Args:
name (str): Name of the persona block
text (str): Text of the persona block
Returns:
persona (Persona): Persona block
"""
return self.server.create_block(CreatePersona(name=name, value=text, user_id=self.user_id), user_id=self.user_id)
def list_humans(self):
"""
List available human block templates
Returns:
humans (List[Human]): List of human blocks
"""
return self.server.get_blocks(label="human", user_id=self.user_id, template=True)
def list_personas(self) -> List[Persona]:
"""
List available persona block templates
Returns:
personas (List[Persona]): List of persona blocks
"""
return self.server.get_blocks(label="persona", user_id=self.user_id, template=True)
def update_human(self, human_id: str, text: str):
"""
Update a human block template
Args:
human_id (str): ID of the human block
text (str): Text of the human block
Returns:
human (Human): Updated human block
"""
return self.server.update_block(UpdateHuman(id=human_id, value=text, user_id=self.user_id, template=True))
def update_persona(self, persona_id: str, text: str):
"""
Update a persona block template
Args:
persona_id (str): ID of the persona block
text (str): Text of the persona block
Returns:
persona (Persona): Updated persona block
"""
return self.server.update_block(UpdatePersona(id=persona_id, value=text, user_id=self.user_id, template=True))
def get_persona(self, id: str) -> Persona:
"""
Get a persona block template
Args:
id (str): ID of the persona block
Returns:
persona (Persona): Persona block
"""
assert id, f"Persona ID must be provided"
return Persona(**self.server.get_block(id).model_dump())
def get_human(self, id: str) -> Human:
"""
Get a human block template
Args:
id (str): ID of the human block
Returns:
human (Human): Human block
"""
assert id, f"Human ID must be provided"
return Human(**self.server.get_block(id).model_dump())
def get_persona_id(self, name: str) -> str:
"""
Get the ID of a persona block template
Args:
name (str): Name of the persona block
Returns:
id (str): ID of the persona block
"""
persona = self.server.get_blocks(name=name, label="persona", user_id=self.user_id, template=True)
if not persona:
return None
return persona[0].id
def get_human_id(self, name: str) -> str:
"""
Get the ID of a human block template
Args:
name (str): Name of the human block
Returns:
id (str): ID of the human block
"""
human = self.server.get_blocks(name=name, label="human", user_id=self.user_id, template=True)
if not human:
return None
return human[0].id
def delete_persona(self, id: str):
"""
Delete a persona block template
Args:
id (str): ID of the persona block
"""
self.server.delete_block(id)
def delete_human(self, id: str):
"""
Delete a human block template
Args:
id (str): ID of the human block
"""
self.server.delete_block(id)
# tools
# TODO: merge this into create_tool
def add_tool(self, tool: Tool, update: Optional[bool] = True) -> Tool:
"""
Adds a tool directly.
Args:
tool (Tool): The tool to add.
update (bool, optional): Update the tool if it already exists. Defaults to True.
Returns:
None
"""
if self.tool_with_name_and_user_id_exists(tool):
if update:
return self.server.update_tool(
ToolUpdate(
id=tool.id,
description=tool.description,
source_type=tool.source_type,
source_code=tool.source_code,
tags=tool.tags,
json_schema=tool.json_schema,
name=tool.name,
),
self.user_id,
)
else:
raise ValueError(f"Tool with id={tool.id} and name={tool.name}already exists")
else:
# call server function
return self.server.create_tool(
ToolCreate(
id=tool.id,
description=tool.description,
source_type=tool.source_type,
source_code=tool.source_code,
name=tool.name,
json_schema=tool.json_schema,
tags=tool.tags,
),
user_id=self.user_id,
update=update,
)
# TODO: Use the above function `add_tool` here as there is duplicate logic
def create_tool(
self,
func,
name: Optional[str] = None,
update: Optional[bool] = True, # TODO: actually use this
tags: Optional[List[str]] = None,
terminal: Optional[bool] = False,
) -> Tool:
"""
Create a tool. This stores the source code of function on the server, so that the server can execute the function and generate an OpenAI JSON schemas for it when using with an agent.
Args:
func (callable): The function to create a tool for.
name: (str): Name of the tool (must be unique per-user.)
tags (Optional[List[str]], optional): Tags for the tool. Defaults to None.
update (bool, optional): Update the tool if it already exists. Defaults to True.
terminal (bool, optional): Whether the tool is a terminal tool (no more agent steps). Defaults to False.
Returns:
tool (Tool): The created tool.
"""
# TODO: check if tool already exists
# TODO: how to load modules?
# parse source code/schema
source_code = parse_source_code(func)
source_type = "python"
if not tags:
tags = []
# call server function
return self.server.create_tool(
# ToolCreate(source_type=source_type, source_code=source_code, name=tool_name, json_schema=json_schema, tags=tags),
ToolCreate(source_type=source_type, source_code=source_code, name=name, tags=tags, terminal=terminal),
user_id=self.user_id,
update=update,
)
def update_tool(
self,
id: str,
name: Optional[str] = None,
func: Optional[callable] = None,
tags: Optional[List[str]] = None,
) -> Tool:
"""
Update a tool with provided parameters (name, func, tags)
Args:
id (str): ID of the tool
name (str): Name of the tool
func (callable): Function to wrap in a tool
tags (List[str]): Tags for the tool
Returns:
tool (Tool): Updated tool
"""
if func:
source_code = parse_source_code(func)
else:
source_code = None
source_type = "python"
return self.server.update_tool(
ToolUpdate(id=id, source_type=source_type, source_code=source_code, tags=tags, name=name), self.user_id
)
def list_tools(self, cursor: Optional[str] = None, limit: Optional[int] = 50) -> List[Tool]:
"""
List available tools for the user.
Returns:
tools (List[Tool]): List of tools
"""
return self.server.list_tools(cursor=cursor, limit=limit, user_id=self.user_id)
def get_tool(self, id: str) -> Optional[Tool]:
"""
Get a tool give its ID.
Args:
id (str): ID of the tool
Returns:
tool (Tool): Tool
"""
return self.server.get_tool(id)
def delete_tool(self, id: str):
"""
Delete a tool given the ID.
Args:
id (str): ID of the tool
"""
return self.server.delete_tool(id)
def get_tool_id(self, name: str) -> Optional[str]:
"""
Get the ID of a tool
Args:
name (str): Name of the tool
Returns:
id (str): ID of the tool (`None` if not found)
"""
return self.server.get_tool_id(name, self.user_id)
def tool_with_name_and_user_id_exists(self, tool: Tool) -> bool:
"""
Check if the tool with name and user_id exists
Args:
tool (Tool): the tool
Returns:
(bool): True if the id exists, False otherwise.
"""
return self.server.tool_with_name_and_user_id_exists(tool, self.user_id)
def load_data(self, connector: DataConnector, source_name: str):
"""
Load data into a source
Args:
connector (DataConnector): Data connector
source_name (str): Name of the source
"""
self.server.load_data(user_id=self.user_id, connector=connector, source_name=source_name)
def load_file_to_source(self, filename: str, source_id: str, blocking=True):
"""
Load a file into a source
Args:
filename (str): Name of the file
source_id (str): ID of the source
blocking (bool): Block until the job is complete
Returns:
job (Job): Data loading job including job status and metadata
"""
metadata_ = {"type": "embedding", "filename": filename, "source_id": source_id}
job = self.server.create_job(user_id=self.user_id, metadata=metadata_)
# TODO: implement blocking vs. non-blocking
self.server.load_file_to_source(source_id=source_id, file_path=filename, job_id=job.id)
return job
def delete_file_from_source(self, source_id: str, file_id: str):
self.server.delete_file_from_source(source_id, file_id, user_id=self.user_id)
def get_job(self, job_id: str):
return self.server.get_job(job_id=job_id)
def delete_job(self, job_id: str):
return self.server.delete_job(job_id)
def list_jobs(self):
return self.server.list_jobs(user_id=self.user_id)
def list_active_jobs(self):
return self.server.list_active_jobs(user_id=self.user_id)
def create_source(self, name: str) -> Source:
"""
Create a source
Args:
name (str): Name of the source
Returns:
source (Source): Created source
"""
request = SourceCreate(name=name)
return self.server.create_source(request=request, user_id=self.user_id)
def delete_source(self, source_id: str):
"""
Delete a source
Args:
source_id (str): ID of the source
"""
# TODO: delete source data
self.server.delete_source(source_id=source_id, user_id=self.user_id)
def get_source(self, source_id: str) -> Source:
"""
Get a source given the ID.
Args:
source_id (str): ID of the source
Returns:
source (Source): Source
"""
return self.server.get_source(source_id=source_id, user_id=self.user_id)
def get_source_id(self, source_name: str) -> str:
"""
Get the ID of a source
Args:
source_name (str): Name of the source
Returns:
source_id (str): ID of the source
"""
return self.server.get_source_id(source_name=source_name, user_id=self.user_id)
def attach_source_to_agent(self, agent_id: str, source_id: Optional[str] = None, source_name: Optional[str] = None):
"""
Attach a source to an agent
Args:
agent_id (str): ID of the agent
source_id (str): ID of the source
source_name (str): Name of the source
"""
self.server.attach_source_to_agent(source_id=source_id, source_name=source_name, agent_id=agent_id, user_id=self.user_id)
def detach_source_from_agent(self, agent_id: str, source_id: Optional[str] = None, source_name: Optional[str] = None):
"""
Detach a source from an agent by removing all `Passage` objects that were loaded from the source from archival memory.
Args:
agent_id (str): ID of the agent
source_id (str): ID of the source
source_name (str): Name of the source
Returns:
source (Source): Detached source
"""
return self.server.detach_source_from_agent(source_id=source_id, source_name=source_name, agent_id=agent_id, user_id=self.user_id)
def list_sources(self) -> List[Source]:
"""
List available sources
Returns:
sources (List[Source]): List of sources
"""
return self.server.list_all_sources(user_id=self.user_id)
def list_attached_sources(self, agent_id: str) -> List[Source]:
"""
List sources attached to an agent
Args:
agent_id (str): ID of the agent
Returns:
sources (List[Source]): List of sources
"""
return self.server.list_attached_sources(agent_id=agent_id)
def list_files_from_source(self, source_id: str, limit: int = 1000, cursor: Optional[str] = None) -> List[FileMetadata]:
"""
List files from source.
Args:
source_id (str): ID of the source
limit (int): The # of items to return
cursor (str): The cursor for fetching the next page
Returns:
files (List[FileMetadata]): List of files
"""
return self.server.list_files_from_source(source_id=source_id, limit=limit, cursor=cursor)
def update_source(self, source_id: str, name: Optional[str] = None) -> Source:
"""
Update a source
Args:
source_id (str): ID of the source
name (str): Name of the source
Returns:
source (Source): Updated source
"""
# TODO should the arg here just be "source_update: Source"?
request = SourceUpdate(id=source_id, name=name)
return self.server.update_source(request=request, user_id=self.user_id)
# archival memory
def insert_archival_memory(self, agent_id: str, memory: str) -> List[Passage]:
"""
Insert archival memory into an agent
Args:
agent_id (str): ID of the agent
memory (str): Memory string to insert
Returns:
passages (List[Passage]): List of inserted passages
"""
return self.server.insert_archival_memory(user_id=self.user_id, agent_id=agent_id, memory_contents=memory)
def delete_archival_memory(self, agent_id: str, memory_id: str):
"""
Delete archival memory from an agent
Args:
agent_id (str): ID of the agent
memory_id (str): ID of the memory
"""
self.server.delete_archival_memory(user_id=self.user_id, agent_id=agent_id, memory_id=memory_id)
def get_archival_memory(
self, agent_id: str, before: Optional[str] = None, after: Optional[str] = None, limit: Optional[int] = 1000
) -> List[Passage]:
"""
Get archival memory from an agent with pagination.
Args:
agent_id (str): ID of the agent
before (str): Get memories before a certain time
after (str): Get memories after a certain time
limit (int): Limit number of memories
Returns:
passages (List[Passage]): List of passages
"""
return self.server.get_agent_archival_cursor(user_id=self.user_id, agent_id=agent_id, before=before, after=after, limit=limit)
# recall memory
def get_messages(
self, agent_id: str, before: Optional[str] = None, after: Optional[str] = None, limit: Optional[int] = 1000
) -> List[Message]:
"""
Get messages from an agent with pagination.
Args:
agent_id (str): ID of the agent
before (str): Get messages before a certain time
after (str): Get messages after a certain time
limit (int): Limit number of messages
Returns:
messages (List[Message]): List of messages
"""
self.interface.clear()
return self.server.get_agent_recall_cursor(
user_id=self.user_id,
agent_id=agent_id,
before=before,
after=after,
limit=limit,
reverse=True,
return_message_object=True,
)
def list_models(self) -> List[LLMConfig]:
"""
List available LLM models
Returns:
models (List[LLMConfig]): List of LLM models
"""
return self.server.list_models()
def list_embedding_models(self) -> List[EmbeddingConfig]:
"""
List available embedding models
Returns:
models (List[EmbeddingConfig]): List of embedding models
"""
return [self.server.server_embedding_config]
def list_blocks(self, label: Optional[str] = None, templates_only: Optional[bool] = True) -> List[Block]:
"""
List available blocks
Args:
label (str): Label of the block
templates_only (bool): List only templates
Returns:
blocks (List[Block]): List of blocks
"""
return self.server.get_blocks(label=label, template=templates_only)
def create_block(self, name: str, text: str, label: Optional[str] = None) -> Block: #
"""
Create a block
Args:
label (str): Label of the block
name (str): Name of the block
text (str): Text of the block
Returns:
block (Block): Created block
"""
return self.server.create_block(CreateBlock(label=label, name=name, value=text, user_id=self.user_id), user_id=self.user_id)
def update_block(self, block_id: str, name: Optional[str] = None, text: Optional[str] = None) -> Block:
"""
Update a block
Args:
block_id (str): ID of the block
name (str): Name of the block
text (str): Text of the block
Returns:
block (Block): Updated block
"""
return self.server.update_block(UpdateBlock(id=block_id, name=name, value=text))
def get_block(self, block_id: str) -> Block:
"""
Get a block
Args:
block_id (str): ID of the block
Returns:
block (Block): Block
"""
return self.server.get_block(block_id)
def delete_block(self, id: str) -> Block:
"""
Delete a block
Args:
id (str): ID of the block
Returns:
block (Block): Deleted block
"""
return self.server.delete_block(id)
def set_default_llm_config(self, llm_config: LLMConfig):
"""
Set the default LLM configuration for agents.
Args:
llm_config (LLMConfig): LLM configuration
"""
self._default_llm_config = llm_config
def set_default_embedding_config(self, embedding_config: EmbeddingConfig):
"""
Set the default embedding configuration for agents.
Args:
embedding_config (EmbeddingConfig): Embedding configuration
"""
self._default_embedding_config = embedding_config
def list_llm_configs(self) -> List[LLMConfig]:
"""
List available LLM configurations
Returns:
configs (List[LLMConfig]): List of LLM configurations
"""
return self.server.list_llm_models()
def list_embedding_configs(self) -> List[EmbeddingConfig]:
"""
List available embedding configurations
Returns:
configs (List[EmbeddingConfig]): List of embedding configurations
"""
return self.server.list_embedding_models()