mirror of
https://github.com/cpacker/MemGPT.git
synced 2025-06-03 04:30:22 +00:00

Co-authored-by: Charles Packer <packercharles@gmail.com> Co-authored-by: Sarah Wooders <sarahwooders@gmail.com> Co-authored-by: Shubham Naik <shub@memgpt.ai> Co-authored-by: Shubham Naik <shub@letta.com>
304 lines
12 KiB
Python
304 lines
12 KiB
Python
import json
|
|
import re
|
|
import warnings
|
|
from typing import List, Optional
|
|
|
|
from letta.schemas.llm_config import LLMConfig
|
|
from letta.schemas.message import Message as _Message
|
|
from letta.schemas.openai.chat_completion_request import AssistantMessage, ChatCompletionRequest, ChatMessage
|
|
from letta.schemas.openai.chat_completion_request import FunctionCall as ToolFunctionChoiceFunctionCall
|
|
from letta.schemas.openai.chat_completion_request import Tool, ToolFunctionChoice, ToolMessage, UserMessage, cast_message_to_subtype
|
|
from letta.schemas.openai.chat_completion_response import ChatCompletionResponse
|
|
from letta.schemas.openai.openai import Function, ToolCall
|
|
from letta.utils import get_tool_call_id
|
|
|
|
|
|
def merge_tool_message(previous_message: ChatMessage, tool_message: ToolMessage) -> ChatMessage:
|
|
"""
|
|
Merge `ToolMessage` objects into the previous message.
|
|
"""
|
|
previous_message.content += (
|
|
f"<ToolMessage> content: {tool_message.content}, role: {tool_message.role}, tool_call_id: {tool_message.tool_call_id}</ToolMessage>"
|
|
)
|
|
return previous_message
|
|
|
|
|
|
def handle_assistant_message(assistant_message: AssistantMessage) -> AssistantMessage:
|
|
"""
|
|
For `AssistantMessage` objects, remove the `tool_calls` field and add them to the `content` field.
|
|
"""
|
|
|
|
if "tool_calls" in assistant_message.dict().keys():
|
|
assistant_message.content = "".join(
|
|
[
|
|
# f"<ToolCall> name: {tool_call.function.name}, function: {tool_call.function}</ToolCall>"
|
|
f"<ToolCall> {json.dumps(tool_call.function.dict())} </ToolCall>"
|
|
for tool_call in assistant_message.tool_calls
|
|
]
|
|
)
|
|
del assistant_message.tool_calls
|
|
return assistant_message
|
|
|
|
|
|
def map_messages_to_deepseek_format(messages: List[ChatMessage]) -> List[_Message]:
|
|
"""
|
|
Deepeek API has the following constraints: messages must be interleaved between user and assistant messages, ending on a user message.
|
|
Tools are currently unstable for V3 and not supported for R1 in the API: https://api-docs.deepseek.com/guides/function_calling.
|
|
|
|
This function merges ToolMessages into AssistantMessages and removes ToolCalls from AssistantMessages, and adds a dummy user message
|
|
at the end.
|
|
|
|
"""
|
|
deepseek_messages = []
|
|
for idx, message in enumerate(messages):
|
|
# First message is the system prompt, add it
|
|
if idx == 0 and message.role == "system":
|
|
deepseek_messages.append(message)
|
|
continue
|
|
if message.role == "user":
|
|
if deepseek_messages[-1].role == "assistant" or deepseek_messages[-1].role == "system":
|
|
# User message, add it
|
|
deepseek_messages.append(UserMessage(content=message.content))
|
|
else:
|
|
# add to the content of the previous message
|
|
deepseek_messages[-1].content += message.content
|
|
elif message.role == "assistant":
|
|
if deepseek_messages[-1].role == "user":
|
|
# Assistant message, remove tool calls and add them to the content
|
|
deepseek_messages.append(handle_assistant_message(message))
|
|
else:
|
|
# add to the content of the previous message
|
|
deepseek_messages[-1].content += message.content
|
|
elif message.role == "tool" and deepseek_messages[-1].role == "assistant":
|
|
# Tool message, add it to the last assistant message
|
|
merged_message = merge_tool_message(deepseek_messages[-1], message)
|
|
deepseek_messages[-1] = merged_message
|
|
else:
|
|
print(f"Skipping message: {message}")
|
|
|
|
# This needs to end on a user message, add a dummy message if the last was assistant
|
|
if deepseek_messages[-1].role == "assistant":
|
|
deepseek_messages.append(UserMessage(content=""))
|
|
return deepseek_messages
|
|
|
|
|
|
def build_deepseek_chat_completions_request(
|
|
llm_config: LLMConfig,
|
|
messages: List[_Message],
|
|
user_id: Optional[str],
|
|
functions: Optional[list],
|
|
function_call: Optional[str],
|
|
use_tool_naming: bool,
|
|
max_tokens: Optional[int],
|
|
) -> ChatCompletionRequest:
|
|
# if functions and llm_config.put_inner_thoughts_in_kwargs:
|
|
# # Special case for LM Studio backend since it needs extra guidance to force out the thoughts first
|
|
# # TODO(fix)
|
|
# inner_thoughts_desc = (
|
|
# INNER_THOUGHTS_KWARG_DESCRIPTION_GO_FIRST if ":1234" in llm_config.model_endpoint else INNER_THOUGHTS_KWARG_DESCRIPTION
|
|
# )
|
|
# functions = add_inner_thoughts_to_functions(
|
|
# functions=functions,
|
|
# inner_thoughts_key=INNER_THOUGHTS_KWARG,
|
|
# inner_thoughts_description=inner_thoughts_desc,
|
|
# )
|
|
|
|
openai_message_list = [cast_message_to_subtype(m.to_openai_dict(put_inner_thoughts_in_kwargs=False)) for m in messages]
|
|
|
|
if llm_config.model:
|
|
model = llm_config.model
|
|
else:
|
|
warnings.warn(f"Model type not set in llm_config: {llm_config.model_dump_json(indent=4)}")
|
|
model = None
|
|
if use_tool_naming:
|
|
if function_call is None:
|
|
tool_choice = None
|
|
elif function_call not in ["none", "auto", "required"]:
|
|
tool_choice = ToolFunctionChoice(type="function", function=ToolFunctionChoiceFunctionCall(name=function_call))
|
|
else:
|
|
tool_choice = function_call
|
|
|
|
def add_functions_to_system_message(system_message: ChatMessage):
|
|
system_message.content += f"<available functions> {''.join(json.dumps(f) for f in functions)} </available functions>"
|
|
system_message.content += f'Select best function to call simply respond with a single json block with the fields "name" and "arguments". Use double quotes around the arguments.'
|
|
|
|
if llm_config.model == "deepseek-reasoner": # R1 currently doesn't support function calling natively
|
|
add_functions_to_system_message(
|
|
openai_message_list[0]
|
|
) # Inject additional instructions to the system prompt with the available functions
|
|
|
|
openai_message_list = map_messages_to_deepseek_format(openai_message_list)
|
|
|
|
data = ChatCompletionRequest(
|
|
model=model,
|
|
messages=openai_message_list,
|
|
user=str(user_id),
|
|
max_completion_tokens=max_tokens,
|
|
temperature=llm_config.temperature,
|
|
)
|
|
else:
|
|
data = ChatCompletionRequest(
|
|
model=model,
|
|
messages=openai_message_list,
|
|
tools=[Tool(type="function", function=f) for f in functions] if functions else None,
|
|
tool_choice=tool_choice,
|
|
user=str(user_id),
|
|
max_completion_tokens=max_tokens,
|
|
temperature=llm_config.temperature,
|
|
)
|
|
else:
|
|
data = ChatCompletionRequest(
|
|
model=model,
|
|
messages=openai_message_list,
|
|
functions=functions,
|
|
function_call=function_call,
|
|
user=str(user_id),
|
|
max_completion_tokens=max_tokens,
|
|
temperature=llm_config.temperature,
|
|
)
|
|
|
|
return data
|
|
|
|
|
|
def convert_deepseek_response_to_chatcompletion(
|
|
response: ChatCompletionResponse,
|
|
) -> ChatCompletionResponse:
|
|
"""
|
|
Example response from DeepSeek:
|
|
|
|
ChatCompletion(
|
|
id='bc7f7d25-82e4-443a-b217-dfad2b66da8e',
|
|
choices=[
|
|
Choice(
|
|
finish_reason='stop',
|
|
index=0,
|
|
logprobs=None,
|
|
message=ChatCompletionMessage(
|
|
content='{"function": "send_message", "arguments": {"message": "Hey! Whales are such majestic creatures, aren\'t they? How\'s your day going? 🌊 "}}',
|
|
refusal=None,
|
|
role='assistant',
|
|
audio=None,
|
|
function_call=None,
|
|
tool_calls=None,
|
|
reasoning_content='Okay, the user said "hello whales". Hmm, that\'s an interesting greeting. Maybe they meant "hello there" or are they actually talking about whales? Let me check if I misheard. Whales are fascinating creatures. I should respond in a friendly way. Let me ask them how they\'re doing and mention whales to keep the conversation going.'
|
|
)
|
|
)
|
|
],
|
|
created=1738266449,
|
|
model='deepseek-reasoner',
|
|
object='chat.completion',
|
|
service_tier=None,
|
|
system_fingerprint='fp_7e73fd9a08',
|
|
usage=CompletionUsage(
|
|
completion_tokens=111,
|
|
prompt_tokens=1270,
|
|
total_tokens=1381,
|
|
completion_tokens_details=CompletionTokensDetails(
|
|
accepted_prediction_tokens=None,
|
|
audio_tokens=None,
|
|
reasoning_tokens=72,
|
|
rejected_prediction_tokens=None
|
|
),
|
|
prompt_tokens_details=PromptTokensDetails(
|
|
audio_tokens=None,
|
|
cached_tokens=1088
|
|
),
|
|
prompt_cache_hit_tokens=1088,
|
|
prompt_cache_miss_tokens=182
|
|
)
|
|
)
|
|
"""
|
|
|
|
def convert_dict_quotes(input_dict: dict):
|
|
"""
|
|
Convert a dictionary with single-quoted keys to double-quoted keys,
|
|
properly handling boolean values and nested structures.
|
|
|
|
Args:
|
|
input_dict (dict): Input dictionary with single-quoted keys
|
|
|
|
Returns:
|
|
str: JSON string with double-quoted keys
|
|
"""
|
|
# First convert the dictionary to a JSON string to handle booleans properly
|
|
json_str = json.dumps(input_dict)
|
|
|
|
# Function to handle complex string replacements
|
|
def replace_quotes(match):
|
|
key = match.group(1)
|
|
# Escape any existing double quotes in the key
|
|
key = key.replace('"', '\\"')
|
|
return f'"{key}":'
|
|
|
|
# Replace single-quoted keys with double-quoted keys
|
|
# This regex looks for single-quoted keys followed by a colon
|
|
def strip_json_block(text):
|
|
# Check if text starts with ```json or similar
|
|
if text.strip().startswith("```"):
|
|
# Split by \n to remove the first and last lines
|
|
lines = text.split("\n")[1:-1]
|
|
return "\n".join(lines)
|
|
return text
|
|
|
|
pattern = r"'([^']*)':"
|
|
converted_str = re.sub(pattern, replace_quotes, strip_json_block(json_str))
|
|
|
|
# Parse the string back to ensure valid JSON format
|
|
try:
|
|
json.loads(converted_str)
|
|
return converted_str
|
|
except json.JSONDecodeError as e:
|
|
raise ValueError(f"Failed to create valid JSON with double quotes: {str(e)}")
|
|
|
|
def extract_json_block(text):
|
|
# Find the first {
|
|
start = text.find("{")
|
|
if start == -1:
|
|
return text
|
|
|
|
# Track nested braces to find the matching closing brace
|
|
brace_count = 0
|
|
end = start
|
|
|
|
for i in range(start, len(text)):
|
|
if text[i] == "{":
|
|
brace_count += 1
|
|
elif text[i] == "}":
|
|
brace_count -= 1
|
|
if brace_count == 0:
|
|
end = i + 1
|
|
break
|
|
|
|
return text[start:end]
|
|
|
|
content = response.choices[0].message.content
|
|
try:
|
|
content_dict = json.loads(extract_json_block(content))
|
|
|
|
if type(content_dict["arguments"]) == str:
|
|
content_dict["arguments"] = json.loads(content_dict["arguments"])
|
|
|
|
tool_calls = [
|
|
ToolCall(
|
|
id=get_tool_call_id(),
|
|
type="function",
|
|
function=Function(
|
|
name=content_dict["name"],
|
|
arguments=convert_dict_quotes(content_dict["arguments"]),
|
|
),
|
|
)
|
|
]
|
|
except (json.JSONDecodeError, TypeError, KeyError) as e:
|
|
print(e)
|
|
tool_calls = response.choices[0].message.tool_calls
|
|
raise ValueError(f"Failed to create valid JSON {content}")
|
|
|
|
# Move the "reasoning_content" into the "content" field
|
|
response.choices[0].message.content = response.choices[0].message.reasoning_content
|
|
response.choices[0].message.tool_calls = tool_calls
|
|
|
|
# Remove the "reasoning_content" field
|
|
response.choices[0].message.reasoning_content = None
|
|
|
|
return response
|