MemGPT/letta/orm/source.py
2024-12-13 14:43:19 -08:00

52 lines
2.0 KiB
Python

from typing import TYPE_CHECKING, List, Optional
from sqlalchemy import JSON, TypeDecorator
from sqlalchemy.orm import Mapped, mapped_column, relationship
from letta.orm.mixins import OrganizationMixin
from letta.orm.sqlalchemy_base import SqlalchemyBase
from letta.schemas.embedding_config import EmbeddingConfig
from letta.schemas.source import Source as PydanticSource
if TYPE_CHECKING:
from letta.orm.organization import Organization
class EmbeddingConfigColumn(TypeDecorator):
"""Custom type for storing EmbeddingConfig as JSON"""
impl = JSON
cache_ok = True
def load_dialect_impl(self, dialect):
return dialect.type_descriptor(JSON())
def process_bind_param(self, value, dialect):
if value:
# return vars(value)
if isinstance(value, EmbeddingConfig):
return value.model_dump()
return value
def process_result_value(self, value, dialect):
if value:
return EmbeddingConfig(**value)
return value
class Source(SqlalchemyBase, OrganizationMixin):
"""A source represents an embedded text passage"""
__tablename__ = "sources"
__pydantic_model__ = PydanticSource
name: Mapped[str] = mapped_column(doc="the name of the source, must be unique within the org", nullable=False)
description: Mapped[str] = mapped_column(nullable=True, doc="a human-readable description of the source")
embedding_config: Mapped[EmbeddingConfig] = mapped_column(EmbeddingConfigColumn, doc="Configuration settings for embedding.")
metadata_: Mapped[Optional[dict]] = mapped_column(JSON, nullable=True, doc="metadata for the source.")
# relationships
organization: Mapped["Organization"] = relationship("Organization", back_populates="sources")
files: Mapped[List["Source"]] = relationship("FileMetadata", back_populates="source", cascade="all, delete-orphan")
agents: Mapped[List["Agent"]] = relationship("Agent", secondary="sources_agents", back_populates="sources")