MemGPT/tests/test_base_functions.py

361 lines
15 KiB
Python

import json
import pytest
import letta.functions.function_sets.base as base_functions
from letta import LocalClient, create_client
from letta.functions.functions import derive_openai_json_schema, parse_source_code
from letta.schemas.embedding_config import EmbeddingConfig
from letta.schemas.letta_message import SystemMessage, ToolReturnMessage
from letta.schemas.llm_config import LLMConfig
from letta.schemas.memory import ChatMemory
from letta.schemas.tool import Tool
from tests.helpers.utils import retry_until_success
from tests.utils import wait_for_incoming_message
@pytest.fixture(scope="function")
def client():
client = create_client()
client.set_default_llm_config(LLMConfig.default_config("gpt-4o"))
client.set_default_embedding_config(EmbeddingConfig.default_config(provider="openai"))
yield client
@pytest.fixture(scope="function")
def agent_obj(client: LocalClient):
"""Create a test agent that we can call functions on"""
send_message_to_agent_and_wait_for_reply_tool_id = client.get_tool_id(name="send_message_to_agent_and_wait_for_reply")
agent_state = client.create_agent(tool_ids=[send_message_to_agent_and_wait_for_reply_tool_id])
agent_obj = client.server.load_agent(agent_id=agent_state.id, actor=client.user)
yield agent_obj
# client.delete_agent(agent_obj.agent_state.id)
@pytest.fixture(scope="function")
def other_agent_obj(client: LocalClient):
"""Create another test agent that we can call functions on"""
agent_state = client.create_agent(include_multi_agent_tools=False)
other_agent_obj = client.server.load_agent(agent_id=agent_state.id, actor=client.user)
yield other_agent_obj
client.delete_agent(other_agent_obj.agent_state.id)
@pytest.fixture
def roll_dice_tool(client):
def roll_dice():
"""
Rolls a 6 sided die.
Returns:
str: The roll result.
"""
return "Rolled a 5!"
# Set up tool details
source_code = parse_source_code(roll_dice)
source_type = "python"
description = "test_description"
tags = ["test"]
tool = Tool(description=description, tags=tags, source_code=source_code, source_type=source_type)
derived_json_schema = derive_openai_json_schema(source_code=tool.source_code, name=tool.name)
derived_name = derived_json_schema["name"]
tool.json_schema = derived_json_schema
tool.name = derived_name
tool = client.server.tool_manager.create_or_update_tool(tool, actor=client.user)
# Yield the created tool
yield tool
def query_in_search_results(search_results, query):
for result in search_results:
if query.lower() in result["content"].lower():
return True
return False
def test_archival(agent_obj):
"""Test archival memory functions comprehensively."""
# Test 1: Basic insertion and retrieval
base_functions.archival_memory_insert(agent_obj, "The cat sleeps on the mat")
base_functions.archival_memory_insert(agent_obj, "The dog plays in the park")
base_functions.archival_memory_insert(agent_obj, "Python is a programming language")
# Test exact text search
results, _ = base_functions.archival_memory_search(agent_obj, "cat")
assert query_in_search_results(results, "cat")
# Test semantic search (should return animal-related content)
results, _ = base_functions.archival_memory_search(agent_obj, "animal pets")
assert query_in_search_results(results, "cat") or query_in_search_results(results, "dog")
# Test unrelated search (should not return animal content)
results, _ = base_functions.archival_memory_search(agent_obj, "programming computers")
assert query_in_search_results(results, "python")
# Test 2: Test pagination
# Insert more items to test pagination
for i in range(10):
base_functions.archival_memory_insert(agent_obj, f"Test passage number {i}")
# Get first page
page0_results, next_page = base_functions.archival_memory_search(agent_obj, "Test passage", page=0)
# Get second page
page1_results, _ = base_functions.archival_memory_search(agent_obj, "Test passage", page=1, start=next_page)
assert page0_results != page1_results
assert query_in_search_results(page0_results, "Test passage")
assert query_in_search_results(page1_results, "Test passage")
# Test 3: Test complex text patterns
base_functions.archival_memory_insert(agent_obj, "Important meeting on 2024-01-15 with John")
base_functions.archival_memory_insert(agent_obj, "Follow-up meeting scheduled for next week")
base_functions.archival_memory_insert(agent_obj, "Project deadline is approaching")
# Search for meeting-related content
results, _ = base_functions.archival_memory_search(agent_obj, "meeting schedule")
assert query_in_search_results(results, "meeting")
assert query_in_search_results(results, "2024-01-15") or query_in_search_results(results, "next week")
# Test 4: Test error handling
# Test invalid page number
try:
base_functions.archival_memory_search(agent_obj, "test", page="invalid")
assert False, "Should have raised ValueError"
except ValueError:
pass
def test_recall(client, agent_obj):
# keyword
keyword = "banana"
# Send messages to agent
client.send_message(agent_id=agent_obj.agent_state.id, role="user", message="hello")
client.send_message(agent_id=agent_obj.agent_state.id, role="user", message=keyword)
client.send_message(agent_id=agent_obj.agent_state.id, role="user", message="tell me a fun fact")
# Conversation search
result = base_functions.conversation_search(agent_obj, "banana")
assert keyword in result
# This test is nondeterministic, so we retry until we get the perfect behavior from the LLM
@retry_until_success(max_attempts=2, sleep_time_seconds=2)
def test_send_message_to_agent(client, agent_obj, other_agent_obj):
secret_word = "banana"
# Encourage the agent to send a message to the other agent_obj with the secret string
client.send_message(
agent_id=agent_obj.agent_state.id,
role="user",
message=f"Use your tool to send a message to another agent with id {other_agent_obj.agent_state.id} to share the secret word: {secret_word}!",
)
# Conversation search the other agent
messages = client.get_messages(other_agent_obj.agent_state.id)
# Check for the presence of system message
for m in reversed(messages):
print(f"\n\n {other_agent_obj.agent_state.id} -> {m.model_dump_json(indent=4)}")
if isinstance(m, SystemMessage):
assert secret_word in m.content
break
# Search the sender agent for the response from another agent
in_context_messages = agent_obj.agent_manager.get_in_context_messages(agent_id=agent_obj.agent_state.id, actor=agent_obj.user)
found = False
target_snippet = f"{other_agent_obj.agent_state.id} said:"
for m in in_context_messages:
if target_snippet in m.text:
found = True
break
print(f"In context messages of the sender agent (without system):\n\n{"\n".join([m.text for m in in_context_messages[1:]])}")
if not found:
raise Exception(f"Was not able to find an instance of the target snippet: {target_snippet}")
# Test that the agent can still receive messages fine
response = client.send_message(agent_id=agent_obj.agent_state.id, role="user", message="So what did the other agent say?")
print(response.messages)
@retry_until_success(max_attempts=2, sleep_time_seconds=2)
def test_send_message_to_agents_with_tags_simple(client):
worker_tags = ["worker", "user-456"]
# Clean up first from possibly failed tests
prev_worker_agents = client.server.agent_manager.list_agents(client.user, tags=worker_tags, match_all_tags=True)
for agent in prev_worker_agents:
client.delete_agent(agent.id)
secret_word = "banana"
# Create "manager" agent
send_message_to_agents_matching_all_tags_tool_id = client.get_tool_id(name="send_message_to_agents_matching_all_tags")
manager_agent_state = client.create_agent(tool_ids=[send_message_to_agents_matching_all_tags_tool_id])
manager_agent = client.server.load_agent(agent_id=manager_agent_state.id, actor=client.user)
# Create 3 non-matching worker agents (These should NOT get the message)
worker_agents = []
worker_tags = ["worker", "user-123"]
for _ in range(3):
worker_agent_state = client.create_agent(include_multi_agent_tools=False, tags=worker_tags)
worker_agent = client.server.load_agent(agent_id=worker_agent_state.id, actor=client.user)
worker_agents.append(worker_agent)
# Create 3 worker agents that should get the message
worker_agents = []
worker_tags = ["worker", "user-456"]
for _ in range(3):
worker_agent_state = client.create_agent(include_multi_agent_tools=False, tags=worker_tags)
worker_agent = client.server.load_agent(agent_id=worker_agent_state.id, actor=client.user)
worker_agents.append(worker_agent)
# Encourage the manager to send a message to the other agent_obj with the secret string
response = client.send_message(
agent_id=manager_agent.agent_state.id,
role="user",
message=f"Send a message to all agents with tags {worker_tags} informing them of the secret word: {secret_word}!",
)
for m in response.messages:
if isinstance(m, ToolReturnMessage):
tool_response = eval(json.loads(m.tool_return)["message"])
print(f"\n\nManager agent tool response: \n{tool_response}\n\n")
assert len(tool_response) == len(worker_agents)
# We can break after this, the ToolReturnMessage after is not related
break
# Conversation search the worker agents
for agent in worker_agents:
messages = client.get_messages(agent.agent_state.id)
# Check for the presence of system message
for m in reversed(messages):
print(f"\n\n {agent.agent_state.id} -> {m.model_dump_json(indent=4)}")
if isinstance(m, SystemMessage):
assert secret_word in m.content
break
# Test that the agent can still receive messages fine
response = client.send_message(agent_id=manager_agent.agent_state.id, role="user", message="So what did the other agents say?")
print("Manager agent followup message: \n\n" + "\n".join([str(m) for m in response.messages]))
# Clean up agents
client.delete_agent(manager_agent_state.id)
for agent in worker_agents:
client.delete_agent(agent.agent_state.id)
# This test is nondeterministic, so we retry until we get the perfect behavior from the LLM
@retry_until_success(max_attempts=2, sleep_time_seconds=2)
def test_send_message_to_agents_with_tags_complex_tool_use(client, roll_dice_tool):
worker_tags = ["dice-rollers"]
# Clean up first from possibly failed tests
prev_worker_agents = client.server.agent_manager.list_agents(client.user, tags=worker_tags, match_all_tags=True)
for agent in prev_worker_agents:
client.delete_agent(agent.id)
# Create "manager" agent
send_message_to_agents_matching_all_tags_tool_id = client.get_tool_id(name="send_message_to_agents_matching_all_tags")
manager_agent_state = client.create_agent(tool_ids=[send_message_to_agents_matching_all_tags_tool_id])
manager_agent = client.server.load_agent(agent_id=manager_agent_state.id, actor=client.user)
# Create 3 worker agents
worker_agents = []
worker_tags = ["dice-rollers"]
for _ in range(2):
worker_agent_state = client.create_agent(include_multi_agent_tools=False, tags=worker_tags, tool_ids=[roll_dice_tool.id])
worker_agent = client.server.load_agent(agent_id=worker_agent_state.id, actor=client.user)
worker_agents.append(worker_agent)
# Encourage the manager to send a message to the other agent_obj with the secret string
broadcast_message = f"Send a message to all agents with tags {worker_tags} asking them to roll a dice for you!"
response = client.send_message(
agent_id=manager_agent.agent_state.id,
role="user",
message=broadcast_message,
)
for m in response.messages:
if isinstance(m, ToolReturnMessage):
tool_response = eval(json.loads(m.tool_return)["message"])
print(f"\n\nManager agent tool response: \n{tool_response}\n\n")
assert len(tool_response) == len(worker_agents)
# We can break after this, the ToolReturnMessage after is not related
break
# Test that the agent can still receive messages fine
response = client.send_message(agent_id=manager_agent.agent_state.id, role="user", message="So what did the other agents say?")
print("Manager agent followup message: \n\n" + "\n".join([str(m) for m in response.messages]))
# Clean up agents
client.delete_agent(manager_agent_state.id)
for agent in worker_agents:
client.delete_agent(agent.agent_state.id)
@retry_until_success(max_attempts=5, sleep_time_seconds=2)
def test_agents_async_simple(client):
"""
Test two agents with multi-agent tools sending messages back and forth to count to 5.
The chain is started by prompting one of the agents.
"""
# Cleanup from potentially failed previous runs
existing_agents = client.server.agent_manager.list_agents(client.user)
for agent in existing_agents:
client.delete_agent(agent.id)
# Create two agents with multi-agent tools
send_message_to_agent_async_tool_id = client.get_tool_id(name="send_message_to_agent_async")
memory_a = ChatMemory(
human="Chad - I'm interested in hearing poem.",
persona="You are an AI agent that can communicate with your agent buddy using `send_message_to_agent_async`, who has some great poem ideas (so I've heard).",
)
charles_state = client.create_agent(name="charles", memory=memory_a, tool_ids=[send_message_to_agent_async_tool_id])
charles = client.server.load_agent(agent_id=charles_state.id, actor=client.user)
memory_b = ChatMemory(
human="No human - you are to only communicate with the other AI agent.",
persona="You are an AI agent that can communicate with your agent buddy using `send_message_to_agent_async`, who is interested in great poem ideas.",
)
sarah_state = client.create_agent(name="sarah", memory=memory_b, tool_ids=[send_message_to_agent_async_tool_id])
# Start the count chain with Agent1
initial_prompt = f"I want you to talk to the other agent with ID {sarah_state.id} using `send_message_to_agent_async`. Specifically, I want you to ask him for a poem idea, and then craft a poem for me."
client.send_message(
agent_id=charles.agent_state.id,
role="user",
message=initial_prompt,
)
found_in_charles = wait_for_incoming_message(
client=client,
agent_id=charles_state.id,
substring="[Incoming message from agent with ID",
max_wait_seconds=10,
sleep_interval=0.5,
)
assert found_in_charles, "Charles never received the system message from Sarah (timed out)."
found_in_sarah = wait_for_incoming_message(
client=client,
agent_id=sarah_state.id,
substring="[Incoming message from agent with ID",
max_wait_seconds=10,
sleep_interval=0.5,
)
assert found_in_sarah, "Sarah never received the system message from Charles (timed out)."