MemGPT/memgpt/cli/cli_config.py
Charles Packer ec7fa25c07
Update AutoGen documentation and notebook example (#540)
* Update AutoGen documentation

* Update webui.md

* Update webui.md

* Update lmstudio.md

* Update lmstudio.md

* Update mkdocs.yml

* Update README.md

* Update README.md

* Update README.md

* Update autogen.md

* Update local_llm.md

* Update local_llm.md

* Update autogen.md

* Update autogen.md

* Update autogen.md

* refreshed the autogen examples + notebook (notebook is untested)

* unrelated patch of typo I noticed

* poetry remove pyautogen, then manually removed autogen extra in .toml

* add pdf dependency

---------

Co-authored-by: Sarah Wooders <sarahwooders@gmail.com>
2023-11-30 17:45:04 -08:00

419 lines
18 KiB
Python

import builtins
import questionary
from prettytable import PrettyTable
import typer
import os
import shutil
# from memgpt.cli import app
from memgpt import utils
from memgpt.config import MemGPTConfig, AgentConfig
from memgpt.constants import MEMGPT_DIR
from memgpt.connectors.storage import StorageConnector
from memgpt.constants import LLM_MAX_TOKENS
from memgpt.local_llm.constants import DEFAULT_ENDPOINTS, DEFAULT_OLLAMA_MODEL, DEFAULT_WRAPPER_NAME
from memgpt.local_llm.utils import get_available_wrappers
app = typer.Typer()
def get_azure_credentials():
azure_key = os.getenv("AZURE_OPENAI_KEY")
azure_endpoint = os.getenv("AZURE_OPENAI_ENDPOINT")
azure_version = os.getenv("AZURE_OPENAI_VERSION")
azure_deployment = os.getenv("AZURE_OPENAI_DEPLOYMENT")
azure_embedding_deployment = os.getenv("AZURE_OPENAI_EMBEDDINGS_DEPLOYMENT")
return azure_key, azure_endpoint, azure_version, azure_deployment, azure_embedding_deployment
def get_openai_credentials():
openai_key = os.getenv("OPENAI_API_KEY")
return openai_key
def configure_llm_endpoint(config: MemGPTConfig):
# configure model endpoint
model_endpoint_type, model_endpoint = None, None
# get default
default_model_endpoint_type = config.model_endpoint_type
if config.model_endpoint_type is not None and config.model_endpoint_type not in ["openai", "azure"]: # local model
default_model_endpoint_type = "local"
provider = questionary.select(
"Select LLM inference provider:", choices=["openai", "azure", "local"], default=default_model_endpoint_type
).ask()
# set: model_endpoint_type, model_endpoint
if provider == "openai":
model_endpoint_type = "openai"
model_endpoint = "https://api.openai.com/v1"
model_endpoint = questionary.text("Override default endpoint:", default=model_endpoint).ask()
provider = "openai"
elif provider == "azure":
model_endpoint_type = "azure"
_, model_endpoint, _, _, _ = get_azure_credentials()
else: # local models
backend_options = ["webui", "webui-legacy", "llamacpp", "koboldcpp", "ollama", "lmstudio", "vllm", "openai"]
default_model_endpoint_type = None
if config.model_endpoint_type in backend_options:
# set from previous config
default_model_endpoint_type = config.model_endpoint_type
model_endpoint_type = questionary.select(
"Select LLM backend (select 'openai' if you have an OpenAI compatible proxy):",
backend_options,
default=default_model_endpoint_type,
).ask()
# set default endpoint
# if OPENAI_API_BASE is set, assume that this is the IP+port the user wanted to use
default_model_endpoint = os.getenv("OPENAI_API_BASE")
# if OPENAI_API_BASE is not set, try to pull a default IP+port format from a hardcoded set
if default_model_endpoint is None:
if model_endpoint_type in DEFAULT_ENDPOINTS:
default_model_endpoint = DEFAULT_ENDPOINTS[model_endpoint_type]
model_endpoint = questionary.text("Enter default endpoint:", default=default_model_endpoint).ask()
elif config.model_endpoint:
model_endpoint = questionary.text("Enter default endpoint:", default=config.model_endpoint).ask()
else:
# default_model_endpoint = None
model_endpoint = None
while not model_endpoint:
model_endpoint = questionary.text("Enter default endpoint:").ask()
if "http://" not in model_endpoint and "https://" not in model_endpoint:
typer.secho(f"Endpoint must be a valid address", fg=typer.colors.YELLOW)
model_endpoint = None
else:
model_endpoint = default_model_endpoint
assert model_endpoint, f"Environment variable OPENAI_API_BASE must be set."
return model_endpoint_type, model_endpoint
def configure_model(config: MemGPTConfig, model_endpoint_type: str):
# set: model, model_wrapper
model, model_wrapper = None, None
if model_endpoint_type == "openai" or model_endpoint_type == "azure":
model_options = ["gpt-4", "gpt-4-1106-preview", "gpt-3.5-turbo", "gpt-3.5-turbo-16k"]
# TODO: select
valid_model = config.model in model_options
model = questionary.select(
"Select default model (recommended: gpt-4):", choices=model_options, default=config.model if valid_model else model_options[0]
).ask()
else: # local models
# ollama also needs model type
if model_endpoint_type == "ollama":
default_model = config.model if config.model and config.model_endpoint_type == "ollama" else DEFAULT_OLLAMA_MODEL
model = questionary.text(
"Enter default model name (required for Ollama, see: https://memgpt.readthedocs.io/en/latest/ollama):",
default=default_model,
).ask()
model = None if len(model) == 0 else model
# vllm needs huggingface model tag
if model_endpoint_type == "vllm":
default_model = config.model if config.model and config.model_endpoint_type == "vllm" else ""
model = questionary.text(
"Enter HuggingFace model tag (e.g. ehartford/dolphin-2.2.1-mistral-7b):",
default=default_model,
).ask()
model = None if len(model) == 0 else model
model_wrapper = None # no model wrapper for vLLM
# model wrapper
if model_endpoint_type != "vllm":
available_model_wrappers = builtins.list(get_available_wrappers().keys())
model_wrapper = questionary.select(
f"Select default model wrapper (recommended: {DEFAULT_WRAPPER_NAME}):",
choices=available_model_wrappers,
default=DEFAULT_WRAPPER_NAME,
).ask()
# set: context_window
if str(model) not in LLM_MAX_TOKENS:
# Ask the user to specify the context length
context_length_options = [
str(2**12), # 4096
str(2**13), # 8192
str(2**14), # 16384
str(2**15), # 32768
str(2**18), # 262144
"custom", # enter yourself
]
context_window = questionary.select(
"Select your model's context window (for Mistral 7B models, this is probably 8k / 8192):",
choices=context_length_options,
default=str(LLM_MAX_TOKENS["DEFAULT"]),
).ask()
# If custom, ask for input
if context_window == "custom":
while True:
context_window = questionary.text("Enter context window (e.g. 8192)").ask()
try:
context_window = int(context_window)
break
except ValueError:
print(f"Context window must be a valid integer")
else:
context_window = int(context_window)
else:
# Pull the context length from the models
context_window = LLM_MAX_TOKENS[model]
return model, model_wrapper, context_window
def configure_embedding_endpoint(config: MemGPTConfig):
# configure embedding endpoint
default_embedding_endpoint_type = config.embedding_endpoint_type
embedding_endpoint_type, embedding_endpoint, embedding_dim, embedding_model = None, None, None, None
embedding_provider = questionary.select(
"Select embedding provider:", choices=["openai", "azure", "hugging-face", "local"], default=default_embedding_endpoint_type
).ask()
if embedding_provider == "openai":
embedding_endpoint_type = "openai"
embedding_endpoint = "https://api.openai.com/v1"
embedding_dim = 1536
elif embedding_provider == "azure":
embedding_endpoint_type = "azure"
_, _, _, _, embedding_endpoint = get_azure_credentials()
embedding_dim = 1536
elif embedding_provider == "hugging-face":
# configure hugging face embedding endpoint (https://github.com/huggingface/text-embeddings-inference)
# supports custom model/endpoints
embedding_endpoint_type = "hugging-face"
embedding_endpoint = None
# get endpoint
embedding_endpoint = questionary.text("Enter default endpoint:").ask()
if "http://" not in embedding_endpoint and "https://" not in embedding_endpoint:
typer.secho(f"Endpoint must be a valid address", fg=typer.colors.YELLOW)
embedding_endpoint = None
# get model type
default_embedding_model = config.embedding_model if config.embedding_model else "BAAI/bge-large-en-v1.5"
embedding_model = questionary.text(
"Enter HuggingFace model tag (e.g. BAAI/bge-large-en-v1.5):",
default=default_embedding_model,
).ask()
# get model dimentions
default_embedding_dim = config.embedding_dim if config.embedding_dim else "1024"
embedding_dim = questionary.text("Enter embedding model dimentions (e.g. 1024):", default=str(default_embedding_dim)).ask()
try:
embedding_dim = int(embedding_dim)
except Exception as e:
raise ValueError(f"Failed to cast {embedding_dim} to integer.")
else: # local models
embedding_endpoint_type = "local"
embedding_endpoint = None
embedding_dim = 384
return embedding_endpoint_type, embedding_endpoint, embedding_dim, embedding_model
def configure_cli(config: MemGPTConfig):
# set: preset, default_persona, default_human, default_agent``
from memgpt.presets.presets import preset_options
# preset
default_preset = config.preset if config.preset and config.preset in preset_options else None
preset = questionary.select("Select default preset:", preset_options, default=default_preset).ask()
# persona
personas = [os.path.basename(f).replace(".txt", "") for f in utils.list_persona_files()]
default_persona = config.persona if config.persona and config.persona in personas else None
persona = questionary.select("Select default persona:", personas, default=default_persona).ask()
# human
humans = [os.path.basename(f).replace(".txt", "") for f in utils.list_human_files()]
default_human = config.human if config.human and config.human in humans else None
human = questionary.select("Select default human:", humans, default=default_human).ask()
# TODO: figure out if we should set a default agent or not
agent = None
return preset, persona, human, agent
def configure_archival_storage(config: MemGPTConfig):
# Configure archival storage backend
archival_storage_options = ["local", "lancedb", "postgres"]
archival_storage_type = questionary.select(
"Select storage backend for archival data:", archival_storage_options, default=config.archival_storage_type
).ask()
archival_storage_uri = None
if archival_storage_type == "postgres":
archival_storage_uri = questionary.text(
"Enter postgres connection string (e.g. postgresql+pg8000://{user}:{password}@{ip}:5432/{database}):",
default=config.archival_storage_uri if config.archival_storage_uri else "",
).ask()
if archival_storage_type == "lancedb":
archival_storage_uri = questionary.text(
"Enter lanncedb connection string (e.g. ./.lancedb",
default=config.archival_storage_uri if config.archival_storage_uri else "./.lancedb",
).ask()
return archival_storage_type, archival_storage_uri
# TODO: allow configuring embedding model
@app.command()
def configure():
"""Updates default MemGPT configurations"""
MemGPTConfig.create_config_dir()
# Will pre-populate with defaults, or what the user previously set
config = MemGPTConfig.load()
model_endpoint_type, model_endpoint = configure_llm_endpoint(config)
model, model_wrapper, context_window = configure_model(config, model_endpoint_type)
embedding_endpoint_type, embedding_endpoint, embedding_dim, embedding_model = configure_embedding_endpoint(config)
default_preset, default_persona, default_human, default_agent = configure_cli(config)
archival_storage_type, archival_storage_uri = configure_archival_storage(config)
# check credentials
azure_key, azure_endpoint, azure_version, azure_deployment, azure_embedding_deployment = get_azure_credentials()
openai_key = get_openai_credentials()
if model_endpoint_type == "azure" or embedding_endpoint_type == "azure":
if all([azure_key, azure_endpoint, azure_version]):
print(f"Using Microsoft endpoint {azure_endpoint}.")
if all([azure_deployment, azure_embedding_deployment]):
print(f"Using deployment id {azure_deployment}")
else:
raise ValueError(
"Missing environment variables for Azure (see https://memgpt.readthedocs.io/en/latest/endpoints/#azure). Please set then run `memgpt configure` again."
)
if model_endpoint_type == "openai" or embedding_endpoint_type == "openai":
if not openai_key:
raise ValueError(
"Missing environment variables for OpenAI (see https://memgpt.readthedocs.io/en/latest/endpoints/#openai). Please set them and run `memgpt configure` again."
)
config = MemGPTConfig(
# model configs
model=model,
model_endpoint=model_endpoint,
model_endpoint_type=model_endpoint_type,
model_wrapper=model_wrapper,
context_window=context_window,
# embedding configs
embedding_endpoint_type=embedding_endpoint_type,
embedding_endpoint=embedding_endpoint,
embedding_dim=embedding_dim,
embedding_model=embedding_model,
# cli configs
preset=default_preset,
persona=default_persona,
human=default_human,
agent=default_agent,
# credentials
openai_key=openai_key,
azure_key=azure_key,
azure_endpoint=azure_endpoint,
azure_version=azure_version,
azure_deployment=azure_deployment,
azure_embedding_deployment=azure_embedding_deployment,
# storage
archival_storage_type=archival_storage_type,
archival_storage_uri=archival_storage_uri,
)
print(f"Saving config to {config.config_path}")
config.save()
@app.command()
def list(option: str):
if option == "agents":
"""List all agents"""
table = PrettyTable()
table.field_names = ["Name", "Model", "Persona", "Human", "Data Source", "Create Time"]
for agent_file in utils.list_agent_config_files():
agent_name = os.path.basename(agent_file).replace(".json", "")
agent_config = AgentConfig.load(agent_name)
table.add_row(
[
agent_name,
agent_config.model,
agent_config.persona,
agent_config.human,
",".join(agent_config.data_sources),
agent_config.create_time,
]
)
print(table)
elif option == "humans":
"""List all humans"""
table = PrettyTable()
table.field_names = ["Name", "Text"]
for human_file in utils.list_human_files():
text = open(human_file, "r").read()
name = os.path.basename(human_file).replace("txt", "")
table.add_row([name, text])
print(table)
elif option == "personas":
"""List all personas"""
table = PrettyTable()
table.field_names = ["Name", "Text"]
for persona_file in utils.list_persona_files():
print(persona_file)
text = open(persona_file, "r").read()
name = os.path.basename(persona_file).replace(".txt", "")
table.add_row([name, text])
print(table)
elif option == "sources":
"""List all data sources"""
table = PrettyTable()
table.field_names = ["Name", "Location", "Agents"]
config = MemGPTConfig.load()
# TODO: eventually look accross all storage connections
# TODO: add data source stats
source_to_agents = {}
for agent_file in utils.list_agent_config_files():
agent_name = os.path.basename(agent_file).replace(".json", "")
agent_config = AgentConfig.load(agent_name)
for ds in agent_config.data_sources:
if ds in source_to_agents:
source_to_agents[ds].append(agent_name)
else:
source_to_agents[ds] = [agent_name]
for data_source in StorageConnector.list_loaded_data():
location = config.archival_storage_type
agents = ",".join(source_to_agents[data_source]) if data_source in source_to_agents else ""
table.add_row([data_source, location, agents])
print(table)
else:
raise ValueError(f"Unknown option {option}")
@app.command()
def add(
option: str, # [human, persona]
name: str = typer.Option(help="Name of human/persona"),
text: str = typer.Option(None, help="Text of human/persona"),
filename: str = typer.Option(None, "-f", help="Specify filename"),
):
"""Add a person/human"""
if option == "persona":
directory = os.path.join(MEMGPT_DIR, "personas")
elif option == "human":
directory = os.path.join(MEMGPT_DIR, "humans")
else:
raise ValueError(f"Unknown kind {option}")
if filename:
assert text is None, f"Cannot provide both filename and text"
# copy file to directory
shutil.copyfile(filename, os.path.join(directory, name))
if text:
assert filename is None, f"Cannot provide both filename and text"
# write text to file
with open(os.path.join(directory, name), "w") as f:
f.write(text)