MemGPT/memgpt/memory.py
2024-07-04 14:45:35 -07:00

599 lines
24 KiB
Python

import datetime
import uuid
from abc import ABC, abstractmethod
from typing import List, Optional, Tuple, Union
from pydantic import BaseModel, validator
from memgpt.constants import MESSAGE_SUMMARY_REQUEST_ACK, MESSAGE_SUMMARY_WARNING_FRAC
from memgpt.data_types import AgentState, Message, Passage
from memgpt.embeddings import embedding_model, parse_and_chunk_text, query_embedding
from memgpt.llm_api.llm_api_tools import create
from memgpt.prompts.gpt_summarize import SYSTEM as SUMMARY_PROMPT_SYSTEM
from memgpt.utils import (
count_tokens,
extract_date_from_timestamp,
get_local_time,
printd,
validate_date_format,
)
class MemoryModule(BaseModel):
"""Base class for memory modules"""
description: Optional[str] = None
limit: int = 2000
value: Optional[Union[List[str], str]] = None
def __setattr__(self, name, value):
"""Run validation if self.value is updated"""
super().__setattr__(name, value)
if name == "value":
# run validation
self.__class__.validate(self.dict(exclude_unset=True))
@validator("value", always=True)
def check_value_length(cls, v, values):
if v is not None:
# Fetching the limit from the values dictionary
limit = values.get("limit", 2000) # Default to 2000 if limit is not yet set
# Check if the value exceeds the limit
if isinstance(v, str):
length = len(v)
elif isinstance(v, list):
length = sum(len(item) for item in v)
else:
raise ValueError("Value must be either a string or a list of strings.")
if length > limit:
error_msg = f"Edit failed: Exceeds {limit} character limit (requested {length})."
# TODO: add archival memory error?
raise ValueError(error_msg)
return v
def __len__(self):
return len(str(self))
def __str__(self) -> str:
if isinstance(self.value, list):
return ",".join(self.value)
elif isinstance(self.value, str):
return self.value
else:
return ""
class BaseMemory:
def __init__(self):
self.memory = {}
@classmethod
def load(cls, state: dict):
"""Load memory from dictionary object"""
obj = cls()
for key, value in state.items():
obj.memory[key] = MemoryModule(**value)
return obj
def __str__(self) -> str:
"""Representation of the memory in-context"""
section_strs = []
for section, module in self.memory.items():
section_strs.append(f'<{section} characters="{len(module)}/{module.limit}">\n{module.value}\n</{section}>')
return "\n".join(section_strs)
def to_dict(self):
"""Convert to dictionary representation"""
return {key: value.dict() for key, value in self.memory.items()}
class ChatMemory(BaseMemory):
def __init__(self, persona: str, human: str, limit: int = 2000):
self.memory = {
"persona": MemoryModule(name="persona", value=persona, limit=limit),
"human": MemoryModule(name="human", value=human, limit=limit),
}
def core_memory_append(self, name: str, content: str) -> Optional[str]:
"""
Append to the contents of core memory.
Args:
name (str): Section of the memory to be edited (persona or human).
content (str): Content to write to the memory. All unicode (including emojis) are supported.
Returns:
Optional[str]: None is always returned as this function does not produce a response.
"""
self.memory[name].value += "\n" + content
return None
def core_memory_replace(self, name: str, old_content: str, new_content: str) -> Optional[str]:
"""
Replace the contents of core memory. To delete memories, use an empty string for new_content.
Args:
name (str): Section of the memory to be edited (persona or human).
old_content (str): String to replace. Must be an exact match.
new_content (str): Content to write to the memory. All unicode (including emojis) are supported.
Returns:
Optional[str]: None is always returned as this function does not produce a response.
"""
self.memory[name].value = self.memory[name].value.replace(old_content, new_content)
return None
def get_memory_functions(cls: BaseMemory) -> List[callable]:
"""Get memory functions for a memory class"""
functions = {}
for func_name in dir(cls):
if func_name.startswith("_") or func_name in ["load", "to_dict"]: # skip base functions
continue
func = getattr(cls, func_name)
if callable(func):
functions[func_name] = func
return functions
# class CoreMemory(object):
# """Held in-context inside the system message
#
# Core Memory: Refers to the system block, which provides essential, foundational context to the AI.
# This includes the persona information, essential user details,
# and any other baseline data you deem necessary for the AI's basic functioning.
# """
#
# def __init__(self, persona=None, human=None, persona_char_limit=None, human_char_limit=None, archival_memory_exists=True):
# self.persona = persona
# self.human = human
# self.persona_char_limit = persona_char_limit
# self.human_char_limit = human_char_limit
#
# # affects the error message the AI will see on overflow inserts
# self.archival_memory_exists = archival_memory_exists
#
# def __repr__(self) -> str:
# return f"\n### CORE MEMORY ###" + f"\n=== Persona ===\n{self.persona}" + f"\n\n=== Human ===\n{self.human}"
#
# def to_dict(self):
# return {
# "persona": self.persona,
# "human": self.human,
# }
#
# @classmethod
# def load(cls, state):
# return cls(state["persona"], state["human"])
#
# def edit_persona(self, new_persona):
# if self.persona_char_limit and len(new_persona) > self.persona_char_limit:
# error_msg = f"Edit failed: Exceeds {self.persona_char_limit} character limit (requested {len(new_persona)})."
# if self.archival_memory_exists:
# error_msg = f"{error_msg} Consider summarizing existing core memories in 'persona' and/or moving lower priority content to archival memory to free up space in core memory, then trying again."
# raise ValueError(error_msg)
#
# self.persona = new_persona
# return len(self.persona)
#
# def edit_human(self, new_human):
# if self.human_char_limit and len(new_human) > self.human_char_limit:
# error_msg = f"Edit failed: Exceeds {self.human_char_limit} character limit (requested {len(new_human)})."
# if self.archival_memory_exists:
# error_msg = f"{error_msg} Consider summarizing existing core memories in 'human' and/or moving lower priority content to archival memory to free up space in core memory, then trying again."
# raise ValueError(error_msg)
#
# self.human = new_human
# return len(self.human)
#
# def edit(self, field, content):
# if field == "persona":
# return self.edit_persona(content)
# elif field == "human":
# return self.edit_human(content)
# else:
# raise KeyError(f'No memory section named {field} (must be either "persona" or "human")')
#
# def edit_append(self, field, content, sep="\n"):
# if field == "persona":
# new_content = self.persona + sep + content
# return self.edit_persona(new_content)
# elif field == "human":
# new_content = self.human + sep + content
# return self.edit_human(new_content)
# else:
# raise KeyError(f'No memory section named {field} (must be either "persona" or "human")')
#
# def edit_replace(self, field, old_content, new_content):
# if len(old_content) == 0:
# raise ValueError("old_content cannot be an empty string (must specify old_content to replace)")
#
# if field == "persona":
# if old_content in self.persona:
# new_persona = self.persona.replace(old_content, new_content)
# return self.edit_persona(new_persona)
# else:
# raise ValueError("Content not found in persona (make sure to use exact string)")
# elif field == "human":
# if old_content in self.human:
# new_human = self.human.replace(old_content, new_content)
# return self.edit_human(new_human)
# else:
# raise ValueError("Content not found in human (make sure to use exact string)")
# else:
# raise KeyError(f'No memory section named {field} (must be either "persona" or "human")')
def _format_summary_history(message_history: List[Message]):
# TODO use existing prompt formatters for this (eg ChatML)
return "\n".join([f"{m.role}: {m.text}" for m in message_history])
def summarize_messages(
agent_state: AgentState,
message_sequence_to_summarize: List[Message],
insert_acknowledgement_assistant_message: bool = True,
):
"""Summarize a message sequence using GPT"""
# we need the context_window
context_window = agent_state.llm_config.context_window
summary_prompt = SUMMARY_PROMPT_SYSTEM
summary_input = _format_summary_history(message_sequence_to_summarize)
summary_input_tkns = count_tokens(summary_input)
if summary_input_tkns > MESSAGE_SUMMARY_WARNING_FRAC * context_window:
trunc_ratio = (MESSAGE_SUMMARY_WARNING_FRAC * context_window / summary_input_tkns) * 0.8 # For good measure...
cutoff = int(len(message_sequence_to_summarize) * trunc_ratio)
summary_input = str(
[summarize_messages(agent_state, message_sequence_to_summarize=message_sequence_to_summarize[:cutoff])]
+ message_sequence_to_summarize[cutoff:]
)
dummy_user_id = uuid.uuid4()
dummy_agent_id = uuid.uuid4()
message_sequence = []
message_sequence.append(Message(user_id=dummy_user_id, agent_id=dummy_agent_id, role="system", text=summary_prompt))
if insert_acknowledgement_assistant_message:
message_sequence.append(Message(user_id=dummy_user_id, agent_id=dummy_agent_id, role="assistant", text=MESSAGE_SUMMARY_REQUEST_ACK))
message_sequence.append(Message(user_id=dummy_user_id, agent_id=dummy_agent_id, role="user", text=summary_input))
response = create(
llm_config=agent_state.llm_config,
user_id=agent_state.user_id,
messages=message_sequence,
)
printd(f"summarize_messages gpt reply: {response.choices[0]}")
reply = response.choices[0].message.content
return reply
class ArchivalMemory(ABC):
@abstractmethod
def insert(self, memory_string: str):
"""Insert new archival memory
:param memory_string: Memory string to insert
:type memory_string: str
"""
@abstractmethod
def search(self, query_string, count=None, start=None) -> Tuple[List[str], int]:
"""Search archival memory
:param query_string: Query string
:type query_string: str
:param count: Number of results to return (None for all)
:type count: Optional[int]
:param start: Offset to start returning results from (None if 0)
:type start: Optional[int]
:return: Tuple of (list of results, total number of results)
"""
@abstractmethod
def __repr__(self) -> str:
pass
class RecallMemory(ABC):
@abstractmethod
def text_search(self, query_string, count=None, start=None):
"""Search messages that match query_string in recall memory"""
@abstractmethod
def date_search(self, start_date, end_date, count=None, start=None):
"""Search messages between start_date and end_date in recall memory"""
@abstractmethod
def __repr__(self) -> str:
pass
@abstractmethod
def insert(self, message: Message):
"""Insert message into recall memory"""
class DummyRecallMemory(RecallMemory):
"""Dummy in-memory version of a recall memory database (eg run on MongoDB)
Recall memory here is basically just a full conversation history with the user.
Queryable via string matching, or date matching.
Recall Memory: The AI's capability to search through past interactions,
effectively allowing it to 'remember' prior engagements with a user.
"""
def __init__(self, message_database=None, restrict_search_to_summaries=False):
self._message_logs = [] if message_database is None else message_database # consists of full message dicts
# If true, the pool of messages that can be queried are the automated summaries only
# (generated when the conversation window needs to be shortened)
self.restrict_search_to_summaries = restrict_search_to_summaries
def __len__(self):
return len(self._message_logs)
def __repr__(self) -> str:
# don't dump all the conversations, just statistics
system_count = user_count = assistant_count = function_count = other_count = 0
for msg in self._message_logs:
role = msg["message"]["role"]
if role == "system":
system_count += 1
elif role == "user":
user_count += 1
elif role == "assistant":
assistant_count += 1
elif role == "function":
function_count += 1
else:
other_count += 1
memory_str = (
f"Statistics:"
+ f"\n{len(self._message_logs)} total messages"
+ f"\n{system_count} system"
+ f"\n{user_count} user"
+ f"\n{assistant_count} assistant"
+ f"\n{function_count} function"
+ f"\n{other_count} other"
)
return f"\n### RECALL MEMORY ###" + f"\n{memory_str}"
def insert(self, message):
raise NotImplementedError("This should be handled by the PersistenceManager, recall memory is just a search layer on top")
def text_search(self, query_string, count=None, start=None):
# in the dummy version, run an (inefficient) case-insensitive match search
message_pool = [d for d in self._message_logs if d["message"]["role"] not in ["system", "function"]]
printd(
f"recall_memory.text_search: searching for {query_string} (c={count}, s={start}) in {len(self._message_logs)} total messages"
)
matches = [
d for d in message_pool if d["message"]["content"] is not None and query_string.lower() in d["message"]["content"].lower()
]
printd(f"recall_memory - matches:\n{matches[start:start+count]}")
# start/count support paging through results
if start is not None and count is not None:
return matches[start : start + count], len(matches)
elif start is None and count is not None:
return matches[:count], len(matches)
elif start is not None and count is None:
return matches[start:], len(matches)
else:
return matches, len(matches)
def date_search(self, start_date, end_date, count=None, start=None):
message_pool = [d for d in self._message_logs if d["message"]["role"] not in ["system", "function"]]
# First, validate the start_date and end_date format
if not validate_date_format(start_date) or not validate_date_format(end_date):
raise ValueError("Invalid date format. Expected format: YYYY-MM-DD")
# Convert dates to datetime objects for comparison
start_date_dt = datetime.datetime.strptime(start_date, "%Y-%m-%d")
end_date_dt = datetime.datetime.strptime(end_date, "%Y-%m-%d")
# Next, match items inside self._message_logs
matches = [
d
for d in message_pool
if start_date_dt <= datetime.datetime.strptime(extract_date_from_timestamp(d["timestamp"]), "%Y-%m-%d") <= end_date_dt
]
# start/count support paging through results
start = int(start) if start is None else start
count = int(count) if count is None else count
if start is not None and count is not None:
return matches[start : start + count], len(matches)
elif start is None and count is not None:
return matches[:count], len(matches)
elif start is not None and count is None:
return matches[start:], len(matches)
else:
return matches, len(matches)
class BaseRecallMemory(RecallMemory):
"""Recall memory based on base functions implemented by storage connectors"""
def __init__(self, agent_state, restrict_search_to_summaries=False):
# If true, the pool of messages that can be queried are the automated summaries only
# (generated when the conversation window needs to be shortened)
self.restrict_search_to_summaries = restrict_search_to_summaries
from memgpt.agent_store.storage import StorageConnector
self.agent_state = agent_state
# create embedding model
self.embed_model = embedding_model(agent_state.embedding_config)
self.embedding_chunk_size = agent_state.embedding_config.embedding_chunk_size
# create storage backend
self.storage = StorageConnector.get_recall_storage_connector(user_id=agent_state.user_id, agent_id=agent_state.id)
# TODO: have some mechanism for cleanup otherwise will lead to OOM
self.cache = {}
def get_all(self, start=0, count=None):
results = self.storage.get_all(start, count)
results_json = [message.to_openai_dict() for message in results]
return results_json, len(results)
def text_search(self, query_string, count=None, start=None):
results = self.storage.query_text(query_string, count, start)
results_json = [message.to_openai_dict_search_results() for message in results]
return results_json, len(results)
def date_search(self, start_date, end_date, count=None, start=None):
results = self.storage.query_date(start_date, end_date, count, start)
results_json = [message.to_openai_dict_search_results() for message in results]
return results_json, len(results)
def __repr__(self) -> str:
total = self.storage.size()
system_count = self.storage.size(filters={"role": "system"})
user_count = self.storage.size(filters={"role": "user"})
assistant_count = self.storage.size(filters={"role": "assistant"})
function_count = self.storage.size(filters={"role": "function"})
other_count = total - (system_count + user_count + assistant_count + function_count)
memory_str = (
f"Statistics:"
+ f"\n{total} total messages"
+ f"\n{system_count} system"
+ f"\n{user_count} user"
+ f"\n{assistant_count} assistant"
+ f"\n{function_count} function"
+ f"\n{other_count} other"
)
return f"\n### RECALL MEMORY ###" + f"\n{memory_str}"
def insert(self, message: Message):
self.storage.insert(message)
def insert_many(self, messages: List[Message]):
self.storage.insert_many(messages)
def save(self):
self.storage.save()
def __len__(self):
return self.storage.size()
class EmbeddingArchivalMemory(ArchivalMemory):
"""Archival memory with embedding based search"""
def __init__(self, agent_state: AgentState, top_k: Optional[int] = 100):
"""Init function for archival memory
:param archival_memory_database: name of dataset to pre-fill archival with
:type archival_memory_database: str
"""
from memgpt.agent_store.storage import StorageConnector
self.top_k = top_k
self.agent_state = agent_state
# create embedding model
self.embed_model = embedding_model(agent_state.embedding_config)
self.embedding_chunk_size = agent_state.embedding_config.embedding_chunk_size
assert self.embedding_chunk_size, f"Must set {agent_state.embedding_config.embedding_chunk_size}"
# create storage backend
self.storage = StorageConnector.get_archival_storage_connector(user_id=agent_state.user_id, agent_id=agent_state.id)
# TODO: have some mechanism for cleanup otherwise will lead to OOM
self.cache = {}
def create_passage(self, text, embedding):
return Passage(
user_id=self.agent_state.user_id,
agent_id=self.agent_state.id,
text=text,
embedding=embedding,
embedding_dim=self.agent_state.embedding_config.embedding_dim,
embedding_model=self.agent_state.embedding_config.embedding_model,
)
def save(self):
"""Save the index to disk"""
self.storage.save()
def insert(self, memory_string, return_ids=False) -> Union[bool, List[uuid.UUID]]:
"""Embed and save memory string"""
if not isinstance(memory_string, str):
raise TypeError("memory must be a string")
try:
passages = []
# breakup string into passages
for text in parse_and_chunk_text(memory_string, self.embedding_chunk_size):
embedding = self.embed_model.get_text_embedding(text)
# fixing weird bug where type returned isn't a list, but instead is an object
# eg: embedding={'object': 'list', 'data': [{'object': 'embedding', 'embedding': [-0.0071973633, -0.07893023,
if isinstance(embedding, dict):
try:
embedding = embedding["data"][0]["embedding"]
except (KeyError, IndexError):
# TODO as a fallback, see if we can find any lists in the payload
raise TypeError(
f"Got back an unexpected payload from text embedding function, type={type(embedding)}, value={embedding}"
)
passages.append(self.create_passage(text, embedding))
# grab the return IDs before the list gets modified
ids = [str(p.id) for p in passages]
# insert passages
self.storage.insert_many(passages)
if return_ids:
return ids
else:
return True
except Exception as e:
print("Archival insert error", e)
raise e
def search(self, query_string, count=None, start=None):
"""Search query string"""
if not isinstance(query_string, str):
return TypeError("query must be a string")
try:
if query_string not in self.cache:
# self.cache[query_string] = self.retriever.retrieve(query_string)
query_vec = query_embedding(self.embed_model, query_string)
self.cache[query_string] = self.storage.query(query_string, query_vec, top_k=self.top_k)
start = int(start if start else 0)
count = int(count if count else self.top_k)
end = min(count + start, len(self.cache[query_string]))
results = self.cache[query_string][start:end]
results = [{"timestamp": get_local_time(), "content": node.text} for node in results]
return results, len(results)
except Exception as e:
print("Archival search error", e)
raise e
def __repr__(self) -> str:
limit = 10
passages = []
for passage in list(self.storage.get_all(limit=limit)): # TODO: only get first 10
passages.append(str(passage.text))
memory_str = "\n".join(passages)
return f"\n### ARCHIVAL MEMORY ###" + f"\n{memory_str}" + f"\nSize: {self.storage.size()}"
def __len__(self):
return self.storage.size()