Remove devicelab specific code for shutting down gradle daemon, add --android-gradle-daemon option to build/run/drive`. Avoids need for un-tested devicelab specific handler. There are also some feature requests for this, so 2 birds one stone.
Example:
flutter build apk --no-android-gradle-daemon will pass --no-daemon on to gradle
Remove devicelab specific code for shutting down gradle daemon, add --android-gradle-daemon option to build/run/drive`. Avoids need for un-tested devicelab specific handler. There are also some feature requests for this, so 2 birds one stone.
Example:
flutter build apk --no-android-gradle-daemon will pass --no-daemon on to gradle
Some of the null-safety commands were missing - plumb them through. Ensure that verbose mode shows their output, and clean up the messaging around sound-null-safety.
Fixes#59769
Adds a test that validate each of the null safety supporting build commands has everything plumbed through.
Also combines experiments into extraGenSnapshot/ExtraFrontEndOptions. Allows providing --no-sound-null-safety to allow out of order migration and running.
* Update project.pbxproj files to say Flutter rather than Chromium
Also, the templates now have an empty organization so that we don't cause people to give their apps a Flutter copyright.
* Update the copyright notice checker to require a standard notice on all files
* Update copyrights on Dart files. (This was a mechanical commit.)
* Fix weird license headers on Dart files that deviate from our conventions; relicense Shrine.
Some were already marked "The Flutter Authors", not clear why. Their
dates have been normalized. Some were missing the blank line after the
license. Some were randomly different in trivial ways for no apparent
reason (e.g. missing the trailing period).
* Clean up the copyrights in non-Dart files. (Manual edits.)
Also, make sure templates don't have copyrights.
* Fix some more ORGANIZATIONNAMEs
Removes multiple re-entrant calls of bundle and aot and replaces them with a single call to assemble. This restores full caching and will allow follow-up performance improvements when building multiple ABIs
`flutter build aar`
This new build command works just like `flutter build apk` or `flutter build appbundle`, but for plugin and module projects.
This PR also refactors how plugins are included in app or module projects. By building the plugins as AARs, the Android Gradle plugin is able to use Jetifier to translate support libraries into AndroidX libraries for all the plugin's native code. Thus, reducing the error rate when using AndroidX in apps.
This change also allows to build modules as AARs, so developers can take these artifacts and distribute them along with the native host app without the need of the Flutter tool. This is a requirement for add to app.
`flutter build aar` generates POM artifacts (XML files) which contain metadata about the native dependencies used by the plugin. This allows Gradle to resolve dependencies at the app level. The result of this new build command is a single build/outputs/repo, the local repository that contains all the generated AARs and POM files.
In a Flutter app project, this local repo is used by the Flutter Gradle plugin to resolve the plugin dependencies. In add to app case, the developer needs to configure the local repo and the dependency manually in `build.gradle`:
repositories {
maven {
url "<path-to-flutter-module>build/host/outputs/repo"
}
}
dependencies {
implementation("<package-name>:flutter_<build-mode>:1.0@aar") {
transitive = true
}
}
`flutter build aar`
This new build command works just like `flutter build apk` or `flutter build appbundle`, but for plugin and module projects.
This PR also refactors how plugins are included in app or module projects. By building the plugins as AARs, the Android Gradle plugin is able to use Jetifier to translate support libraries into AndroidX libraries for all the plugin's native code. Thus, reducing the error rate when using AndroidX in apps.
This change also allows to build modules as AARs, so developers can take these artifacts and distribute them along with the native host app without the need of the Flutter tool. This is a requirement for add to app.
`flutter build aar` generates POM artifacts (XML files) which contain metadata about the native dependencies used by the plugin. This allows Gradle to resolve dependencies at the app level. The result of this new build command is a single build/outputs/repo, the local repository that contains all the generated AARs and POM files.
In a Flutter app project, this local repo is used by the Flutter Gradle plugin to resolve the plugin dependencies. In add to app case, the developer needs to configure the local repo and the dependency manually in `build.gradle`:
repositories {
maven {
url "<path-to-flutter-module>build/host/outputs/repo"
}
}
dependencies {
implementation("<package-name>:flutter_<build-mode>:1.0@aar") {
transitive = true
}
}