// Copyright 2014 The Flutter Authors. All rights reserved. // Use of this source code is governed by a BSD-style license that can be // found in the LICENSE file. import 'dart:math' as math; import 'package:meta/meta.dart'; /// Collects data from an A/B test and produces a summary for human evaluation. /// /// See [printSummary] for more. class ABTest { final Map> _aResults = >{}; final Map> _bResults = >{}; /// Adds the result of a single A run of the benchmark. /// /// The result may contain multiple score keys. /// /// [result] is expected to be a serialization of [TaskResult]. void addAResult(Map result) { _addResult(result, _aResults); } /// Adds the result of a single B run of the benchmark. /// /// The result may contain multiple score keys. /// /// [result] is expected to be a serialization of [TaskResult]. void addBResult(Map result) { _addResult(result, _bResults); } /// Returns unprocessed data collected by the A/B test formatted as /// a tab-separated spreadsheet. String rawResults() { final StringBuffer buffer = StringBuffer(); for (final String scoreKey in _allScoreKeys) { buffer.writeln('$scoreKey:'); buffer.write(' A:\t'); if (_aResults.containsKey(scoreKey)) { for (final double score in _aResults[scoreKey]) { buffer.write('${score.toStringAsFixed(2)}\t'); } } else { buffer.write('N/A'); } buffer.writeln(); buffer.write(' B:\t'); if (_bResults.containsKey(scoreKey)) { for (final double score in _bResults[scoreKey]) { buffer.write('${score.toStringAsFixed(2)}\t'); } } else { buffer.write('N/A'); } buffer.writeln(); } return buffer.toString(); } Set get _allScoreKeys { return { ..._aResults.keys, ..._bResults.keys, }; } /// Returns the summary as a tab-separated spreadsheet. /// /// This value can be copied straight to a Google Spreadsheet for further analysis. String printSummary() { final Map summariesA = _summarize(_aResults); final Map summariesB = _summarize(_bResults); final StringBuffer buffer = StringBuffer( 'Score\tAverage A (noise)\tAverage B (noise)\tSpeed-up\n', ); for (final String scoreKey in _allScoreKeys) { final _ScoreSummary summaryA = summariesA[scoreKey]; final _ScoreSummary summaryB = summariesB[scoreKey]; buffer.write('$scoreKey\t'); if (summaryA != null) { buffer.write('${summaryA.average.toStringAsFixed(2)} (${_ratioToPercent(summaryA.noise)})\t'); } else { buffer.write('\t'); } if (summaryB != null) { buffer.write('${summaryB.average.toStringAsFixed(2)} (${_ratioToPercent(summaryB.noise)})\t'); } else { buffer.write('\t'); } if (summaryA != null && summaryB != null) { buffer.write('${(summaryA.average / summaryB.average).toStringAsFixed(2)}x\t'); } buffer.writeln(); } return buffer.toString(); } } class _ScoreSummary { _ScoreSummary({ @required this.average, @required this.noise, }); /// Average (arithmetic mean) of a series of values collected by a benchmark. final double average; /// The noise (standard deviation divided by [average]) in the collected /// values. final double noise; } void _addResult(Map result, Map> results) { final List scoreKeys = (result['benchmarkScoreKeys'] as List).cast(); final Map data = result['data'] as Map; for (final String scoreKey in scoreKeys) { final double score = (data[scoreKey] as num).toDouble(); results.putIfAbsent(scoreKey, () => []).add(score); } } Map _summarize(Map> results) { return results.map((String scoreKey, List values) { final double average = _computeAverage(values); return MapEntry(scoreKey, _ScoreSummary( average: average, // If the average is zero, the benchmark got the perfect score with no noise. noise: average > 0 ? _computeStandardDeviationForPopulation(values) / average : 0.0, )); }); } /// Computes the arithmetic mean (or average) of given [values]. double _computeAverage(Iterable values) { final double sum = values.reduce((double a, double b) => a + b); return sum / values.length; } /// Computes population standard deviation. /// /// Unlike sample standard deviation, which divides by N - 1, this divides by N. /// /// See also: /// /// * https://en.wikipedia.org/wiki/Standard_deviation double _computeStandardDeviationForPopulation(Iterable population) { final double mean = _computeAverage(population); final double sumOfSquaredDeltas = population.fold( 0.0, (double previous, num value) => previous += math.pow(value - mean, 2), ); return math.sqrt(sumOfSquaredDeltas / population.length); } String _ratioToPercent(double value) { return '${(value * 100).toStringAsFixed(2)}%'; }