// Copyright 2020 Intel Corporation. All Rights Reserved. // // Licensed under the Apache License, Version 2.0 (the "License"); // you may not use this file except in compliance with the License. // You may obtain a copy of the License at // // http://www.apache.org/licenses/LICENSE-2.0 // // Unless required by applicable law or agreed to in writing, software // distributed under the License is distributed on an "AS IS" BASIS, // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. // See the License for the specific language governing permissions and // limitations under the License. package gpu import ( "context" "path/filepath" "time" "github.com/intel/intel-device-plugins-for-kubernetes/test/e2e/utils" "github.com/onsi/ginkgo" v1 "k8s.io/api/core/v1" "k8s.io/apimachinery/pkg/api/resource" metav1 "k8s.io/apimachinery/pkg/apis/meta/v1" "k8s.io/apimachinery/pkg/labels" "k8s.io/kubernetes/test/e2e/framework" "k8s.io/kubernetes/test/e2e/framework/kubectl" e2epod "k8s.io/kubernetes/test/e2e/framework/pod" imageutils "k8s.io/kubernetes/test/utils/image" ) const ( kustomizationYaml = "deployments/gpu_plugin/kustomization.yaml" ) func init() { ginkgo.Describe("GPU plugin", describe) } func describe() { f := framework.NewDefaultFramework("gpuplugin") kustomizationPath, err := utils.LocateRepoFile(kustomizationYaml) if err != nil { framework.Failf("unable to locate %q: %v", kustomizationYaml, err) } ginkgo.It("checks availability of GPU resources", func() { ginkgo.By("deploying GPU plugin") framework.RunKubectlOrDie(f.Namespace.Name, "--namespace", f.Namespace.Name, "apply", "-k", filepath.Dir(kustomizationPath)) ginkgo.By("waiting for GPU plugin's availability") if _, err := e2epod.WaitForPodsWithLabelRunningReady(f.ClientSet, f.Namespace.Name, labels.Set{"app": "intel-gpu-plugin"}.AsSelector(), 1 /* one replica */, 100*time.Second); err != nil { framework.DumpAllNamespaceInfo(f.ClientSet, f.Namespace.Name) kubectl.LogFailedContainers(f.ClientSet, f.Namespace.Name, framework.Logf) framework.Failf("unable to wait for all pods to be running and ready: %v", err) } ginkgo.By("checking the resource is allocatable") if err := utils.WaitForNodesWithResource(f.ClientSet, "gpu.intel.com/i915", 30*time.Second); err != nil { framework.Failf("unable to wait for nodes to have positive allocatable resource: %v", err) } ginkgo.By("submitting a pod requesting GPU resources") podSpec := &v1.Pod{ ObjectMeta: metav1.ObjectMeta{Name: "gpuplugin-tester"}, Spec: v1.PodSpec{ Containers: []v1.Container{ { Args: []string{"-c", "echo hello world"}, Name: "testcontainer", Image: imageutils.GetE2EImage(imageutils.BusyBox), Command: []string{"/bin/sh"}, Resources: v1.ResourceRequirements{ Requests: v1.ResourceList{"gpu.intel.com/i915": resource.MustParse("1")}, Limits: v1.ResourceList{"gpu.intel.com/i915": resource.MustParse("1")}, }, }, }, RestartPolicy: v1.RestartPolicyNever, }, } pod, err := f.ClientSet.CoreV1().Pods(f.Namespace.Name).Create(context.TODO(), podSpec, metav1.CreateOptions{}) framework.ExpectNoError(err, "pod Create API error") ginkgo.By("waiting the pod to finnish successfully") f.PodClient().WaitForFinish(pod.ObjectMeta.Name, 30*time.Second) }) }