intel-device-plugins-for-ku.../deployments/gpu_tensorflow_test/training.py
Tuomas Katila 4212145126 e2e: gpu: add a basic tensorflow test
Signed-off-by: Tuomas Katila <tuomas.katila@intel.com>
2023-08-22 15:51:35 +03:00

62 lines
1.8 KiB
Python

# Copyright 2018 The TensorFlow Authors.
# Copyright 2023 Intel Corporation. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# original code from:
# https://github.com/tensorflow/examples/blob/master/courses/udacity_intro_to_tensorflow_for_deep_learning/l02c01_celsius_to_fahrenheit.ipynb
# this is slightly modified to run explicitly with XPU devices
import tensorflow as tf
import intel_extension_for_tensorflow as itex
import numpy as np
print("BACKENDS: ", str(itex.get_backend()))
devs = tf.config.list_physical_devices('XPU')
print(devs)
if not devs:
raise Exception("No devices found")
with tf.device("/xpu:0"):
celsius_q = np.array([-40, -10, 0, 8, 15, 22, 38], dtype=float)
fahrenheit_a = np.array([-40, 14, 32, 46, 59, 72, 100], dtype=float)
model = tf.keras.Sequential([
tf.keras.layers.Dense(units=1, input_shape=[1])
])
model.compile(loss='mean_squared_error',
optimizer=tf.keras.optimizers.Adam(0.1))
history = model.fit(celsius_q, fahrenheit_a, epochs=500, verbose=False)
print("model trained")
test = [100.0]
p = model.predict(test)
if len(p) != 1:
raise Exception("invalid result obj")
prediction = p[0]
if prediction >= 211 and prediction <= 213:
print("inference ok: %f" % prediction)
else:
raise Exception("bad prediction %f" % prediction)
print("SUCCESS")