open62541/include/ua_types.h

916 lines
31 KiB
C++

/* This Source Code Form is subject to the terms of the Mozilla Public
* License, v. 2.0. If a copy of the MPL was not distributed with this
* file, You can obtain one at http://mozilla.org/MPL/2.0/. */
/* Copyright (C) 2013-2016 the contributors as stated in the AUTHORS file
*
* This file is part of open62541. open62541 is free software: you can
* redistribute it and/or modify it under the terms of the GNU Lesser General
* Public License, version 3 (as published by the Free Software Foundation) with
* a static linking exception as stated in the LICENSE file provided with
* open62541.
*
* open62541 is distributed in the hope that it will be useful, but WITHOUT ANY
* WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR
* A PARTICULAR PURPOSE. See the GNU Lesser General Public License for more
* details. */
#ifndef UA_TYPES_H_
#define UA_TYPES_H_
#ifdef __cplusplus
extern "C" {
#endif
#include "ua_config.h"
#include "ua_constants.h"
/**
* .. _types:
*
* Data Types
* ==========
*
* The OPC UA protocol defines 25 builtin data types and three ways of combining
* them into higher-order types: arrays, structures and unions. In open62541,
* the builtin data types are defined manually. All other data types are
* generated from standard XML definitions. Their exact definitions can be
* looked up at https://opcfoundation.org/UA/schemas/Opc.Ua.Types.bsd.xml.
*
* Note that arrays can only be part of a scalar data type and never constitute
* a data type on their own. Also, open62541 does not implement unions so far.
* They are a recent addition to the protocol (since OPC UA v1.03). And so far,
* no service definition makes of unions in the request / response message
* definition. Instead, :ref:`Variants <variant>` are used when values of
* different types are possible.
*
* All data types ``T`` (builtin and generated) share the same basic API for
* creation, copying and deletion:
*
* - ``void T_init(T *ptr)``: Initialize the data type. This is synonymous with
* zeroing out the memory, i.e. ``memset(ptr, 0, sizeof(T))``.
* - ``T* T_new()``: Allocate and return the memory for the data type. The
* value is already initialized.
* - ``UA_StatusCode T_copy(const T *src, T *dst)``: Copy the content of the
* data type. Returns ``UA_STATUSCODE_GOOD`` or
* ``UA_STATUSCODE_BADOUTOFMEMORY``.
* - ``void T_deleteMembers(T *ptr)``: Delete the dynamically allocated content
* of the data type and perform a ``T_init`` to reset the type.
* - ``void T_delete(T *ptr)``: Delete the content of the data type and the
* memory for the data type itself. */
#define UA_BUILTIN_TYPES_COUNT 25U
/**
* Builtin Types
* -------------
*
* Boolean
* ^^^^^^^
* A two-state logical value (true or false). */
typedef bool UA_Boolean;
#define UA_TRUE true
#define UA_FALSE false
/**
* SByte
* ^^^^^
* An integer value between -128 and 127. */
typedef int8_t UA_SByte;
#define UA_SBYTE_MIN (-128)
#define UA_SBYTE_MAX 127
/**
* Byte
* ^^^^
* An integer value between 0 and 255. */
typedef uint8_t UA_Byte;
#define UA_BYTE_MIN 0
#define UA_BYTE_MAX 255
/**
* Int16
* ^^^^^
* An integer value between -32 768 and 32 767. */
typedef int16_t UA_Int16;
#define UA_INT16_MIN (-32768)
#define UA_INT16_MAX 32767
/**
* UInt16
* ^^^^^^
* An integer value between 0 and 65 535. */
typedef uint16_t UA_UInt16;
#define UA_UINT16_MIN 0
#define UA_UINT16_MAX 65535
/**
* Int32
* ^^^^^
* An integer value between -2 147 483 648 and 2 147 483 647. */
typedef int32_t UA_Int32;
#define UA_INT32_MIN (-2147483648)
#define UA_INT32_MAX 2147483647
/**
* UInt32
* ^^^^^^
* An integer value between 0 and 4 294 967 295. */
typedef uint32_t UA_UInt32;
#define UA_UINT32_MIN 0
#define UA_UINT32_MAX 4294967295
/**
* Int64
* ^^^^^
* An integer value between -9 223 372 036 854 775 808 and
* 9 223 372 036 854 775 807. */
typedef int64_t UA_Int64;
#define UA_INT64_MIN ((int64_t)-9223372036854775808)
#define UA_INT64_MAX (int64_t)9223372036854775807
/**
* UInt64
* ^^^^^^
* An integer value between 0 and 18 446 744 073 709 551 615. */
typedef uint64_t UA_UInt64;
#define UA_UINT64_MIN (int64_t)0
#define UA_UINT64_MAX (int64_t)18446744073709551615
/**
* Float
* ^^^^^
* An IEEE single precision (32 bit) floating point value. */
typedef float UA_Float;
/**
* Double
* ^^^^^^
* An IEEE double precision (64 bit) floating point value. */
typedef double UA_Double;
/**
* .. _statuscode:
*
* StatusCode
* ^^^^^^^^^^
* A numeric identifier for a error or condition that is associated with a value
* or an operation. See the section :ref:`statuscodes` for the meaning of a
* specific code. */
typedef uint32_t UA_StatusCode;
typedef struct {
UA_StatusCode code; /* The numeric value of the StatusCode */
const char* name; /* The symbolic name */
const char* explanation; /* Short message explaining the StatusCode */
} UA_StatusCodeDescription;
/* Returns the description of the StatusCode. Never returns NULL, but a generic
* description for invalid StatusCodes instead. */
UA_EXPORT const UA_StatusCodeDescription *
UA_StatusCode_description(UA_StatusCode code);
static UA_INLINE const char *
UA_StatusCode_name(UA_StatusCode code) {
return UA_StatusCode_description(code)->name;
}
static UA_INLINE const char *
UA_StatusCode_explanation(UA_StatusCode code) {
return UA_StatusCode_description(code)->explanation;
}
/**
* String
* ^^^^^^
* A sequence of Unicode characters. Strings are just an array of UA_Byte. */
typedef struct {
size_t length; /* The length of the string */
UA_Byte *data; /* The content (not null-terminated) */
} UA_String;
/* Copies the content on the heap. Returns a null-string when alloc fails */
UA_String UA_EXPORT UA_String_fromChars(char const src[]) UA_FUNC_ATTR_WARN_UNUSED_RESULT;
UA_Boolean UA_EXPORT UA_String_equal(const UA_String *s1, const UA_String *s2);
UA_EXPORT extern const UA_String UA_STRING_NULL;
/**
* ``UA_STRING`` returns a string pointing to the preallocated char-array.
* ``UA_STRING_ALLOC`` is shorthand for ``UA_String_fromChars`` and makes a copy
* of the char-array. */
static UA_INLINE UA_String
UA_STRING(char *chars) {
UA_String str; str.length = strlen(chars);
str.data = (UA_Byte*)chars; return str;
}
#define UA_STRING_ALLOC(CHARS) UA_String_fromChars(CHARS)
/**
* DateTime
* ^^^^^^^^
* An instance in time. A DateTime value is encoded as a 64-bit signed integer
* which represents the number of 100 nanosecond intervals since January 1, 1601
* (UTC). */
typedef int64_t UA_DateTime;
/* Multiply to convert units for time difference computations */
#define UA_USEC_TO_DATETIME 10LL
#define UA_MSEC_TO_DATETIME (UA_USEC_TO_DATETIME * 1000LL)
#define UA_SEC_TO_DATETIME (UA_MSEC_TO_DATETIME * 1000LL)
/* Datetime of 1 Jan 1970 00:00 UTC */
#define UA_DATETIME_UNIX_EPOCH (11644473600LL * UA_SEC_TO_DATETIME)
/* The current time */
UA_DateTime UA_EXPORT UA_DateTime_now(void);
/* CPU clock invariant to system time changes. Use only for time diffs, not
* current time */
UA_DateTime UA_EXPORT UA_DateTime_nowMonotonic(void);
typedef struct UA_DateTimeStruct {
UA_UInt16 nanoSec;
UA_UInt16 microSec;
UA_UInt16 milliSec;
UA_UInt16 sec;
UA_UInt16 min;
UA_UInt16 hour;
UA_UInt16 day;
UA_UInt16 month;
UA_UInt16 year;
} UA_DateTimeStruct;
UA_DateTimeStruct UA_EXPORT UA_DateTime_toStruct(UA_DateTime t);
UA_String UA_EXPORT UA_DateTime_toString(UA_DateTime t);
/**
* Guid
* ^^^^
* A 16 byte value that can be used as a globally unique identifier. */
typedef struct {
UA_UInt32 data1;
UA_UInt16 data2;
UA_UInt16 data3;
UA_Byte data4[8];
} UA_Guid;
UA_Boolean UA_EXPORT UA_Guid_equal(const UA_Guid *g1, const UA_Guid *g2);
UA_EXPORT extern const UA_Guid UA_GUID_NULL;
/**
* ByteString
* ^^^^^^^^^^
* A sequence of octets. */
typedef UA_String UA_ByteString;
static UA_INLINE UA_Boolean
UA_ByteString_equal(const UA_ByteString *string1, const UA_ByteString *string2) {
return UA_String_equal((const UA_String*)string1, (const UA_String*)string2);
}
/* Allocates memory of size length for the bytestring.
* The content is not set to zero. */
UA_StatusCode UA_EXPORT
UA_ByteString_allocBuffer(UA_ByteString *bs, size_t length);
UA_EXPORT extern const UA_ByteString UA_BYTESTRING_NULL;
static UA_INLINE UA_ByteString
UA_BYTESTRING(char *chars) {
UA_ByteString str; str.length = strlen(chars);
str.data = (UA_Byte*)chars; return str;
}
static UA_INLINE UA_ByteString
UA_BYTESTRING_ALLOC(const char *chars) {
UA_String str = UA_String_fromChars(chars); UA_ByteString bstr;
bstr.length = str.length; bstr.data = str.data; return bstr;
}
/**
* XmlElement
* ^^^^^^^^^^
* An XML element. */
typedef UA_String UA_XmlElement;
/**
* .. _nodeid:
*
* NodeId
* ^^^^^^
* An identifier for a node in the address space of an OPC UA Server. */
enum UA_NodeIdType {
UA_NODEIDTYPE_NUMERIC = 0, /* In the binary encoding, this can also
become 1 or 2 (2byte and 4byte encoding of
small numeric nodeids) */
UA_NODEIDTYPE_STRING = 3,
UA_NODEIDTYPE_GUID = 4,
UA_NODEIDTYPE_BYTESTRING = 5
};
typedef struct {
UA_UInt16 namespaceIndex;
enum UA_NodeIdType identifierType;
union {
UA_UInt32 numeric;
UA_String string;
UA_Guid guid;
UA_ByteString byteString;
} identifier;
} UA_NodeId;
UA_EXPORT extern const UA_NodeId UA_NODEID_NULL;
UA_Boolean UA_EXPORT UA_NodeId_isNull(const UA_NodeId *p);
UA_Boolean UA_EXPORT UA_NodeId_equal(const UA_NodeId *n1, const UA_NodeId *n2);
/* Returns a non-cryptographic hash for the NodeId */
UA_UInt32 UA_EXPORT UA_NodeId_hash(const UA_NodeId *n);
/** The following functions are shorthand for creating NodeIds. */
static UA_INLINE UA_NodeId
UA_NODEID_NUMERIC(UA_UInt16 nsIndex, UA_UInt32 identifier) {
UA_NodeId id; id.namespaceIndex = nsIndex;
id.identifierType = UA_NODEIDTYPE_NUMERIC;
id.identifier.numeric = identifier; return id;
}
static UA_INLINE UA_NodeId
UA_NODEID_STRING(UA_UInt16 nsIndex, char *chars) {
UA_NodeId id; id.namespaceIndex = nsIndex;
id.identifierType = UA_NODEIDTYPE_STRING;
id.identifier.string = UA_STRING(chars); return id;
}
static UA_INLINE UA_NodeId
UA_NODEID_STRING_ALLOC(UA_UInt16 nsIndex, const char *chars) {
UA_NodeId id; id.namespaceIndex = nsIndex;
id.identifierType = UA_NODEIDTYPE_STRING;
id.identifier.string = UA_STRING_ALLOC(chars); return id;
}
static UA_INLINE UA_NodeId
UA_NODEID_GUID(UA_UInt16 nsIndex, UA_Guid guid) {
UA_NodeId id; id.namespaceIndex = nsIndex;
id.identifierType = UA_NODEIDTYPE_GUID;
id.identifier.guid = guid; return id;
}
static UA_INLINE UA_NodeId
UA_NODEID_BYTESTRING(UA_UInt16 nsIndex, char *chars) {
UA_NodeId id; id.namespaceIndex = nsIndex;
id.identifierType = UA_NODEIDTYPE_BYTESTRING;
id.identifier.byteString = UA_BYTESTRING(chars); return id;
}
static UA_INLINE UA_NodeId
UA_NODEID_BYTESTRING_ALLOC(UA_UInt16 nsIndex, const char *chars) {
UA_NodeId id; id.namespaceIndex = nsIndex;
id.identifierType = UA_NODEIDTYPE_BYTESTRING;
id.identifier.byteString = UA_BYTESTRING_ALLOC(chars); return id;
}
/**
* ExpandedNodeId
* ^^^^^^^^^^^^^^
* A NodeId that allows the namespace URI to be specified instead of an index. */
typedef struct {
UA_NodeId nodeId;
UA_String namespaceUri;
UA_UInt32 serverIndex;
} UA_ExpandedNodeId;
/** The following functions are shorthand for creating ExpandedNodeIds. */
static UA_INLINE UA_ExpandedNodeId
UA_EXPANDEDNODEID_NUMERIC(UA_UInt16 nsIndex, UA_UInt32 identifier) {
UA_ExpandedNodeId id; id.nodeId = UA_NODEID_NUMERIC(nsIndex, identifier);
id.serverIndex = 0; id.namespaceUri = UA_STRING_NULL; return id;
}
static UA_INLINE UA_ExpandedNodeId
UA_EXPANDEDNODEID_STRING(UA_UInt16 nsIndex, char *chars) {
UA_ExpandedNodeId id; id.nodeId = UA_NODEID_STRING(nsIndex, chars);
id.serverIndex = 0; id.namespaceUri = UA_STRING_NULL; return id;
}
static UA_INLINE UA_ExpandedNodeId
UA_EXPANDEDNODEID_STRING_ALLOC(UA_UInt16 nsIndex, const char *chars) {
UA_ExpandedNodeId id; id.nodeId = UA_NODEID_STRING_ALLOC(nsIndex, chars);
id.serverIndex = 0; id.namespaceUri = UA_STRING_NULL; return id;
}
static UA_INLINE UA_ExpandedNodeId
UA_EXPANDEDNODEID_STRING_GUID(UA_UInt16 nsIndex, UA_Guid guid) {
UA_ExpandedNodeId id; id.nodeId = UA_NODEID_GUID(nsIndex, guid);
id.serverIndex = 0; id.namespaceUri = UA_STRING_NULL; return id;
}
static UA_INLINE UA_ExpandedNodeId
UA_EXPANDEDNODEID_BYTESTRING(UA_UInt16 nsIndex, char *chars) {
UA_ExpandedNodeId id; id.nodeId = UA_NODEID_BYTESTRING(nsIndex, chars);
id.serverIndex = 0; id.namespaceUri = UA_STRING_NULL; return id;
}
static UA_INLINE UA_ExpandedNodeId
UA_EXPANDEDNODEID_BYTESTRING_ALLOC(UA_UInt16 nsIndex, const char *chars) {
UA_ExpandedNodeId id; id.nodeId = UA_NODEID_BYTESTRING_ALLOC(nsIndex, chars);
id.serverIndex = 0; id.namespaceUri = UA_STRING_NULL; return id;
}
/**
* .. _qualifiedname:
*
* QualifiedName
* ^^^^^^^^^^^^^
* A name qualified by a namespace. */
typedef struct {
UA_UInt16 namespaceIndex;
UA_String name;
} UA_QualifiedName;
static UA_INLINE UA_Boolean
UA_QualifiedName_isNull(const UA_QualifiedName *q) {
return (q->namespaceIndex == 0 && q->name.length == 0);
}
static UA_INLINE UA_QualifiedName
UA_QUALIFIEDNAME(UA_UInt16 nsIndex, char *chars) {
UA_QualifiedName qn; qn.namespaceIndex = nsIndex;
qn.name = UA_STRING(chars); return qn;
}
static UA_INLINE UA_QualifiedName
UA_QUALIFIEDNAME_ALLOC(UA_UInt16 nsIndex, const char *chars) {
UA_QualifiedName qn; qn.namespaceIndex = nsIndex;
qn.name = UA_STRING_ALLOC(chars); return qn;
}
/**
* LocalizedText
* ^^^^^^^^^^^^^
* Human readable text with an optional locale identifier. */
typedef struct {
UA_String locale;
UA_String text;
} UA_LocalizedText;
static UA_INLINE UA_LocalizedText
UA_LOCALIZEDTEXT(char *locale, char *text) {
UA_LocalizedText lt; lt.locale = UA_STRING(locale);
lt.text = UA_STRING(text); return lt;
}
static UA_INLINE UA_LocalizedText
UA_LOCALIZEDTEXT_ALLOC(const char *locale, const char *text) {
UA_LocalizedText lt; lt.locale = UA_STRING_ALLOC(locale);
lt.text = UA_STRING_ALLOC(text); return lt;
}
/**
* .. _variant:
*
* Variant
* ^^^^^^^
*
* Variants may contain values of any type together with a description of the
* content. See the section on :ref:`generic-types` on how types are described.
* The standard mandates that variants contain built-in data types only. If the
* value is not of a builtin type, it is wrapped into an :ref:`extensionobject`.
* open62541 hides this wrapping transparently in the encoding layer. If the
* data type is unknown to the receiver, the variant contains the original
* ExtensionObject in binary or XML encoding.
*
* Variants may contain a scalar value or an array. For details on the handling
* of arrays, see the section on :ref:`array-handling`. Array variants can have
* an additional dimensionality (matrix, 3-tensor, ...) defined in an array of
* dimension lengths. The actual values are kept in an array of dimensions one.
* For users who work with higher-dimensions arrays directly, keep in mind that
* dimensions of higher rank are serialized first (the highest rank dimension
* has stride 1 and elements follow each other directly). Usually it is simplest
* to interact with higher-dimensional arrays via ``UA_NumericRange``
* descriptions (see :ref:`array-handling`).
*
* To differentiate between scalar / array variants, the following definition is
* used. ``UA_Variant_isScalar`` provides simplified access to these checks.
*
* - ``arrayLength == 0 && data == NULL``: undefined array of length -1
* - ``arrayLength == 0 && data == UA_EMPTY_ARRAY_SENTINEL``: array of length 0
* - ``arrayLength == 0 && data > UA_EMPTY_ARRAY_SENTINEL``: scalar value
* - ``arrayLength > 0``: array of the given length
*
* Variants can also be *empty*. Then, the pointer to the type description is
* ``NULL``. */
/* Forward declaration. See the section on Generic Type Handling */
struct UA_DataType;
typedef struct UA_DataType UA_DataType;
/* Forward declaration. See the section on Array Handling */
struct UA_NumericRange;
typedef struct UA_NumericRange UA_NumericRange;
#define UA_EMPTY_ARRAY_SENTINEL ((void*)0x01)
typedef enum {
UA_VARIANT_DATA, /* The data has the same lifecycle as the
variant */
UA_VARIANT_DATA_NODELETE, /* The data is "borrowed" by the variant and
shall not be deleted at the end of the
variant's lifecycle. */
} UA_VariantStorageType;
typedef struct {
const UA_DataType *type; /* The data type description */
UA_VariantStorageType storageType;
size_t arrayLength; /* The number of elements in the data array */
void *data; /* Points to the scalar or array data */
size_t arrayDimensionsSize; /* The number of dimensions */
UA_UInt32 *arrayDimensions; /* The length of each dimension */
} UA_Variant;
/* Returns true if the variant has no value defined (contains neither an array
* nor a scalar value).
*
* @param v The variant
* @return Is the variant empty */
static UA_INLINE UA_Boolean
UA_Variant_isEmpty(const UA_Variant *v) {
return v->type == NULL;
}
/* Returns true if the variant contains a scalar value. Note that empty variants
* contain an array of length -1 (undefined).
*
* @param v The variant
* @return Does the variant contain a scalar value */
static UA_INLINE UA_Boolean
UA_Variant_isScalar(const UA_Variant *v) {
return (v->arrayLength == 0 && v->data > UA_EMPTY_ARRAY_SENTINEL);
}
/* Returns true if the variant contains a scalar value of the given type.
*
* @param v The variant
* @param type The data type
* @return Does the variant contain a scalar value of the given type */
static UA_INLINE UA_Boolean
UA_Variant_hasScalarType(const UA_Variant *v, const UA_DataType *type) {
return UA_Variant_isScalar(v) && type == v->type;
}
/* Returns true if the variant contains an array of the given type.
*
* @param v The variant
* @param type The data type
* @return Does the variant contain an array of the given type */
static UA_INLINE UA_Boolean
UA_Variant_hasArrayType(const UA_Variant *v, const UA_DataType *type) {
return (!UA_Variant_isScalar(v)) && type == v->type;
}
/* Set the variant to a scalar value that already resides in memory. The value
* takes on the lifecycle of the variant and is deleted with it.
*
* @param v The variant
* @param p A pointer to the value data
* @param type The datatype of the value in question */
void UA_EXPORT
UA_Variant_setScalar(UA_Variant *v, void * UA_RESTRICT p,
const UA_DataType *type);
/* Set the variant to a scalar value that is copied from an existing variable.
* @param v The variant
* @param p A pointer to the value data
* @param type The datatype of the value
* @return Indicates whether the operation succeeded or returns an error code */
UA_StatusCode UA_EXPORT
UA_Variant_setScalarCopy(UA_Variant *v, const void *p,
const UA_DataType *type);
/* Set the variant to an array that already resides in memory. The array takes
* on the lifecycle of the variant and is deleted with it.
*
* @param v The variant
* @param array A pointer to the array data
* @param arraySize The size of the array
* @param type The datatype of the array */
void UA_EXPORT
UA_Variant_setArray(UA_Variant *v, void * UA_RESTRICT array,
size_t arraySize, const UA_DataType *type);
/* Set the variant to an array that is copied from an existing array.
*
* @param v The variant
* @param array A pointer to the array data
* @param arraySize The size of the array
* @param type The datatype of the array
* @return Indicates whether the operation succeeded or returns an error code */
UA_StatusCode UA_EXPORT
UA_Variant_setArrayCopy(UA_Variant *v, const void *array,
size_t arraySize, const UA_DataType *type);
/* Copy the variant, but use only a subset of the (multidimensional) array into
* a variant. Returns an error code if the variant is not an array or if the
* indicated range does not fit.
*
* @param src The source variant
* @param dst The target variant
* @param range The range of the copied data
* @return Returns UA_STATUSCODE_GOOD or an error code */
UA_StatusCode UA_EXPORT
UA_Variant_copyRange(const UA_Variant *src, UA_Variant *dst,
const UA_NumericRange range);
/* Insert a range of data into an existing variant. The data array can't be
* reused afterwards if it contains types without a fixed size (e.g. strings)
* since the members are moved into the variant and take on its lifecycle.
*
* @param v The variant
* @param dataArray The data array. The type must match the variant
* @param dataArraySize The length of the data array. This is checked to match
* the range size.
* @param range The range of where the new data is inserted
* @return Returns UA_STATUSCODE_GOOD or an error code */
UA_StatusCode UA_EXPORT
UA_Variant_setRange(UA_Variant *v, void * UA_RESTRICT array,
size_t arraySize, const UA_NumericRange range);
/* Deep-copy a range of data into an existing variant.
*
* @param v The variant
* @param dataArray The data array. The type must match the variant
* @param dataArraySize The length of the data array. This is checked to match
* the range size.
* @param range The range of where the new data is inserted
* @return Returns UA_STATUSCODE_GOOD or an error code */
UA_StatusCode UA_EXPORT
UA_Variant_setRangeCopy(UA_Variant *v, const void *array,
size_t arraySize, const UA_NumericRange range);
/**
* .. _extensionobject:
*
* ExtensionObject
* ^^^^^^^^^^^^^^^
*
* ExtensionObjects may contain scalars of any data type. Even those that are
* unknown to the receiver. See the section on :ref:`generic-types` on how types
* are described. If the received data type is unkown, the encoded string and
* target NodeId is stored instead of the decoded value. */
typedef enum {
UA_EXTENSIONOBJECT_ENCODED_NOBODY = 0,
UA_EXTENSIONOBJECT_ENCODED_BYTESTRING = 1,
UA_EXTENSIONOBJECT_ENCODED_XML = 2,
UA_EXTENSIONOBJECT_DECODED = 3,
UA_EXTENSIONOBJECT_DECODED_NODELETE = 4 /* Don't delete the content
together with the
ExtensionObject */
} UA_ExtensionObjectEncoding;
typedef struct {
UA_ExtensionObjectEncoding encoding;
union {
struct {
UA_NodeId typeId; /* The nodeid of the datatype */
UA_ByteString body; /* The bytestring of the encoded data */
} encoded;
struct {
const UA_DataType *type;
void *data;
} decoded;
} content;
} UA_ExtensionObject;
/**
* .. _datavalue:
*
* DataValue
* ^^^^^^^^^
* A data value with an associated status code and timestamps. */
typedef struct {
UA_Boolean hasValue : 1;
UA_Boolean hasStatus : 1;
UA_Boolean hasSourceTimestamp : 1;
UA_Boolean hasServerTimestamp : 1;
UA_Boolean hasSourcePicoseconds : 1;
UA_Boolean hasServerPicoseconds : 1;
UA_Variant value;
UA_StatusCode status;
UA_DateTime sourceTimestamp;
UA_UInt16 sourcePicoseconds;
UA_DateTime serverTimestamp;
UA_UInt16 serverPicoseconds;
} UA_DataValue;
/**
* DiagnosticInfo
* ^^^^^^^^^^^^^^
* A structure that contains detailed error and diagnostic information
* associated with a StatusCode. */
typedef struct UA_DiagnosticInfo {
UA_Boolean hasSymbolicId : 1;
UA_Boolean hasNamespaceUri : 1;
UA_Boolean hasLocalizedText : 1;
UA_Boolean hasLocale : 1;
UA_Boolean hasAdditionalInfo : 1;
UA_Boolean hasInnerStatusCode : 1;
UA_Boolean hasInnerDiagnosticInfo : 1;
UA_Int32 symbolicId;
UA_Int32 namespaceUri;
UA_Int32 localizedText;
UA_Int32 locale;
UA_String additionalInfo;
UA_StatusCode innerStatusCode;
struct UA_DiagnosticInfo *innerDiagnosticInfo;
} UA_DiagnosticInfo;
/**
* .. _generic-types:
*
* Generic Type Handling
* ---------------------
* The builtin types can be combined to data structures. All information about a
* (structured) data type is stored in a ``UA_DataType``. The array ``UA_TYPES``
* contains the description of all standard-defined types and is used for
* handling of generic types. */
typedef struct {
#ifdef UA_ENABLE_TYPENAMES
const char *memberName;
#endif
UA_UInt16 memberTypeIndex; /* Index of the member in the array of data
types */
UA_Byte padding; /* How much padding is there before this
member element? For arrays this is the
padding before the size_t lenght member.
(No padding between size_t and the
following ptr.) */
UA_Boolean namespaceZero : 1; /* The type of the member is defined in
namespace zero. In this implementation,
types from custom namespace may contain
members from the same namespace or
namespace zero only.*/
UA_Boolean isArray : 1; /* The member is an array */
} UA_DataTypeMember;
struct UA_DataType {
#ifdef UA_ENABLE_TYPENAMES
const char *typeName;
#endif
UA_NodeId typeId; /* The nodeid of the type */
UA_UInt16 memSize; /* Size of the struct in memory */
UA_UInt16 typeIndex; /* Index of the type in the datatypetable */
UA_Byte membersSize; /* How many members does the type have? */
UA_Boolean builtin : 1; /* The type is "builtin" and has dedicated de-
and encoding functions */
UA_Boolean pointerFree : 1; /* The type (and its members) contains no
pointers that need to be freed */
UA_Boolean overlayable : 1; /* The type has the identical memory layout in
memory and on the binary stream. */
UA_UInt16 binaryEncodingId; /* NodeId of datatype when encoded as binary */
//UA_UInt16 xmlEncodingId; /* NodeId of datatype when encoded as XML */
UA_DataTypeMember *members;
};
/**
* Builtin data types can be accessed as UA_TYPES[UA_TYPES_XXX], where XXX is
* the name of the data type. If only the NodeId of a type is known, use the
* following method to retrieve the data type description. */
/* Returns the data type description for the type's identifier or NULL if no
* matching data type was found. */
const UA_DataType UA_EXPORT *
UA_findDataType(const UA_NodeId *typeId);
/** The following functions are used for generic handling of data types. */
/* Allocates and initializes a variable of type dataType
*
* @param type The datatype description
* @return Returns the memory location of the variable or NULL if no
* memory could be allocated */
void UA_EXPORT * UA_new(const UA_DataType *type) UA_FUNC_ATTR_MALLOC;
/* Initializes a variable to default values
*
* @param p The memory location of the variable
* @param type The datatype description */
static UA_INLINE void
UA_init(void *p, const UA_DataType *type) {
memset(p, 0, type->memSize);
}
/* Copies the content of two variables. If copying fails (e.g. because no memory
* was available for an array), then dst is emptied and initialized to prevent
* memory leaks.
*
* @param src The memory location of the source variable
* @param dst The memory location of the destination variable
* @param type The datatype description
* @return Indicates whether the operation succeeded or returns an error code */
UA_StatusCode UA_EXPORT
UA_copy(const void *src, void *dst, const UA_DataType *type);
/* Deletes the dynamically allocated content of a variable (e.g. resets all
* arrays to undefined arrays). Afterwards, the variable can be safely deleted
* without causing memory leaks. But the variable is not initialized and may
* contain old data that is not memory-relevant.
*
* @param p The memory location of the variable
* @param type The datatype description of the variable */
void UA_EXPORT UA_deleteMembers(void *p, const UA_DataType *type);
/* Frees a variable and all of its content.
*
* @param p The memory location of the variable
* @param type The datatype description of the variable */
void UA_EXPORT UA_delete(void *p, const UA_DataType *type);
/**
* .. _array-handling:
*
* Array handling
* --------------
* In OPC UA, arrays can have a length of zero or more with the usual meaning.
* In addition, arrays can be undefined. Then, they don't even have a length. In
* the binary encoding, this is indicated by an array of length -1.
*
* In open62541 however, we use ``size_t`` for array lengths. An undefined array
* has length 0 and the data pointer is ``NULL``. An array of length 0 also has
* length 0 but a data pointer ``UA_EMPTY_ARRAY_SENTINEL``. */
/* Allocates and initializes an array of variables of a specific type
*
* @param size The requested array length
* @param type The datatype description
* @return Returns the memory location of the variable or NULL if no memory
could be allocated */
void UA_EXPORT * UA_Array_new(size_t size, const UA_DataType *type) UA_FUNC_ATTR_MALLOC;
/* Allocates and copies an array
*
* @param src The memory location of the source array
* @param size The size of the array
* @param dst The location of the pointer to the new array
* @param type The datatype of the array members
* @return Returns UA_STATUSCODE_GOOD or UA_STATUSCODE_BADOUTOFMEMORY */
UA_StatusCode UA_EXPORT
UA_Array_copy(const void *src, size_t size, void **dst,
const UA_DataType *type) UA_FUNC_ATTR_WARN_UNUSED_RESULT;
/* Deletes an array.
*
* @param p The memory location of the array
* @param size The size of the array
* @param type The datatype of the array members */
void UA_EXPORT UA_Array_delete(void *p, size_t size, const UA_DataType *type);
/**
* .. _numericrange:
*
* NumericRange
* ^^^^^^^^^^^^
*
* NumericRanges are used to indicate subsets of a (multidimensional) variant
* array. NumericRange has no official type structure in the standard. On the
* wire, it only exists as an encoded string, such as "1:2,0:3,5". The colon
* separates min/max index and the comma separates dimensions. A single value
* indicates a range with a single element (min==max). */
typedef struct {
UA_UInt32 min;
UA_UInt32 max;
} UA_NumericRangeDimension;
struct UA_NumericRange {
size_t dimensionsSize;
UA_NumericRangeDimension *dimensions;
};
/**
* Random Number Generator
* -----------------------
* If UA_ENABLE_MULTITHREADING is defined, then the seed is stored in thread
* local storage. The seed is initialized for every thread in the
* server/client. */
void UA_EXPORT UA_random_seed(UA_UInt64 seed);
UA_UInt32 UA_EXPORT UA_UInt32_random(void); /* no cryptographic entropy */
UA_Guid UA_EXPORT UA_Guid_random(void); /* no cryptographic entropy */
/**
* .. _generated-types:
*
* Generated Data Type Definitions
* -------------------------------
*
* The following data types were auto-generated from a definition in XML format.
*
* .. toctree::
*
* types_generated */
#ifdef __cplusplus
} // extern "C"
#endif
#endif /* UA_TYPES_H_ */