mirror of
https://github.com/flutter/flutter.git
synced 2025-06-03 00:51:18 +00:00

* print intermediate A/B results when not silent * print raw A/B results when in loud mode * add tests; handle missing metrics more gracefully * use less fancy section header on Windows
169 lines
5.3 KiB
Dart
169 lines
5.3 KiB
Dart
// Copyright 2014 The Flutter Authors. All rights reserved.
|
|
// Use of this source code is governed by a BSD-style license that can be
|
|
// found in the LICENSE file.
|
|
|
|
import 'dart:math' as math;
|
|
import 'package:meta/meta.dart';
|
|
|
|
/// Collects data from an A/B test and produces a summary for human evaluation.
|
|
///
|
|
/// See [printSummary] for more.
|
|
class ABTest {
|
|
final Map<String, List<double>> _aResults = <String, List<double>>{};
|
|
final Map<String, List<double>> _bResults = <String, List<double>>{};
|
|
|
|
/// Adds the result of a single A run of the benchmark.
|
|
///
|
|
/// The result may contain multiple score keys.
|
|
///
|
|
/// [result] is expected to be a serialization of [TaskResult].
|
|
void addAResult(Map<String, dynamic> result) {
|
|
_addResult(result, _aResults);
|
|
}
|
|
|
|
/// Adds the result of a single B run of the benchmark.
|
|
///
|
|
/// The result may contain multiple score keys.
|
|
///
|
|
/// [result] is expected to be a serialization of [TaskResult].
|
|
void addBResult(Map<String, dynamic> result) {
|
|
_addResult(result, _bResults);
|
|
}
|
|
|
|
/// Returns unprocessed data collected by the A/B test formatted as
|
|
/// a tab-separated spreadsheet.
|
|
String rawResults() {
|
|
final StringBuffer buffer = StringBuffer();
|
|
for (final String scoreKey in _allScoreKeys) {
|
|
buffer.writeln('$scoreKey:');
|
|
buffer.write(' A:\t');
|
|
if (_aResults.containsKey(scoreKey)) {
|
|
for (final double score in _aResults[scoreKey]) {
|
|
buffer.write('${score.toStringAsFixed(2)}\t');
|
|
}
|
|
} else {
|
|
buffer.write('N/A');
|
|
}
|
|
buffer.writeln();
|
|
|
|
buffer.write(' B:\t');
|
|
if (_bResults.containsKey(scoreKey)) {
|
|
for (final double score in _bResults[scoreKey]) {
|
|
buffer.write('${score.toStringAsFixed(2)}\t');
|
|
}
|
|
} else {
|
|
buffer.write('N/A');
|
|
}
|
|
buffer.writeln();
|
|
}
|
|
return buffer.toString();
|
|
}
|
|
|
|
Set<String> get _allScoreKeys {
|
|
return <String>{
|
|
..._aResults.keys,
|
|
..._bResults.keys,
|
|
};
|
|
}
|
|
|
|
/// Returns the summary as a tab-separated spreadsheet.
|
|
///
|
|
/// This value can be copied straight to a Google Spreadsheet for further analysis.
|
|
String printSummary() {
|
|
final Map<String, _ScoreSummary> summariesA = _summarize(_aResults);
|
|
final Map<String, _ScoreSummary> summariesB = _summarize(_bResults);
|
|
|
|
final StringBuffer buffer = StringBuffer(
|
|
'Score\tAverage A (noise)\tAverage B (noise)\tSpeed-up\n',
|
|
);
|
|
|
|
for (final String scoreKey in _allScoreKeys) {
|
|
final _ScoreSummary summaryA = summariesA[scoreKey];
|
|
final _ScoreSummary summaryB = summariesB[scoreKey];
|
|
buffer.write('$scoreKey\t');
|
|
|
|
if (summaryA != null) {
|
|
buffer.write('${summaryA.average.toStringAsFixed(2)} (${_ratioToPercent(summaryA.noise)})\t');
|
|
} else {
|
|
buffer.write('\t');
|
|
}
|
|
|
|
if (summaryB != null) {
|
|
buffer.write('${summaryB.average.toStringAsFixed(2)} (${_ratioToPercent(summaryB.noise)})\t');
|
|
} else {
|
|
buffer.write('\t');
|
|
}
|
|
|
|
if (summaryA != null && summaryB != null) {
|
|
buffer.write('${(summaryA.average / summaryB.average).toStringAsFixed(2)}x\t');
|
|
}
|
|
|
|
buffer.writeln();
|
|
}
|
|
|
|
return buffer.toString();
|
|
}
|
|
}
|
|
|
|
class _ScoreSummary {
|
|
_ScoreSummary({
|
|
@required this.average,
|
|
@required this.noise,
|
|
});
|
|
|
|
/// Average (arithmetic mean) of a series of values collected by a benchmark.
|
|
final double average;
|
|
|
|
/// The noise (standard deviation divided by [average]) in the collected
|
|
/// values.
|
|
final double noise;
|
|
}
|
|
|
|
void _addResult(Map<String, dynamic> result, Map<String, List<double>> results) {
|
|
final List<String> scoreKeys = (result['benchmarkScoreKeys'] as List<dynamic>).cast<String>();
|
|
final Map<String, dynamic> data = result['data'] as Map<String, dynamic>;
|
|
for (final String scoreKey in scoreKeys) {
|
|
final double score = (data[scoreKey] as num).toDouble();
|
|
results.putIfAbsent(scoreKey, () => <double>[]).add(score);
|
|
}
|
|
}
|
|
|
|
Map<String, _ScoreSummary> _summarize(Map<String, List<double>> results) {
|
|
return results.map<String, _ScoreSummary>((String scoreKey, List<double> values) {
|
|
final double average = _computeAverage(values);
|
|
return MapEntry<String, _ScoreSummary>(scoreKey, _ScoreSummary(
|
|
average: average,
|
|
// If the average is zero, the benchmark got the perfect score with no noise.
|
|
noise: average > 0
|
|
? _computeStandardDeviationForPopulation(values) / average
|
|
: 0.0,
|
|
));
|
|
});
|
|
}
|
|
|
|
/// Computes the arithmetic mean (or average) of given [values].
|
|
double _computeAverage(Iterable<double> values) {
|
|
final double sum = values.reduce((double a, double b) => a + b);
|
|
return sum / values.length;
|
|
}
|
|
|
|
/// Computes population standard deviation.
|
|
///
|
|
/// Unlike sample standard deviation, which divides by N - 1, this divides by N.
|
|
///
|
|
/// See also:
|
|
///
|
|
/// * https://en.wikipedia.org/wiki/Standard_deviation
|
|
double _computeStandardDeviationForPopulation(Iterable<double> population) {
|
|
final double mean = _computeAverage(population);
|
|
final double sumOfSquaredDeltas = population.fold<double>(
|
|
0.0,
|
|
(double previous, num value) => previous += math.pow(value - mean, 2),
|
|
);
|
|
return math.sqrt(sumOfSquaredDeltas / population.length);
|
|
}
|
|
|
|
String _ratioToPercent(double value) {
|
|
return '${(value * 100).toStringAsFixed(2)}%';
|
|
}
|