Merge branch 'main' into bump-7-17

This commit is contained in:
Caren Thomas 2025-05-16 01:36:43 -07:00
commit 472811a563
33 changed files with 359 additions and 87 deletions

View File

@ -11,20 +11,25 @@ assignees: ''
A clear and concise description of what the bug is.
**Please describe your setup**
- [ ] How did you install letta?
- `pip install letta`? `pip install letta-nightly`? `git clone`?
- [ ] How are you running Letta?
- Docker
- pip (legacy)
- From source
- Desktop
- [ ] Describe your setup
- What's your OS (Windows/MacOS/Linux)?
- How are you running `letta`? (`cmd.exe`/Powershell/Anaconda Shell/Terminal)
- What is your `docker run ...` command (if applicable)
**Screenshots**
If applicable, add screenshots to help explain your problem.
**Additional context**
Add any other context about the problem here.
- What model you are using
**Agent File (optional)**
Please attach your `.af` file, as this helps with reproducing issues.
**Letta Config**
Please attach your `~/.letta/config` file or copy paste it below.
---

View File

@ -1,19 +0,0 @@
name: Notify Letta Cloud
on:
push:
branches:
- main
jobs:
notify:
runs-on: ubuntu-latest
if: ${{ !contains(github.event.head_commit.message, '[sync-skip]') }}
steps:
- name: Trigger repository_dispatch
run: |
curl -X POST \
-H "Authorization: token ${{ secrets.SYNC_PAT }}" \
-H "Accept: application/vnd.github.v3+json" \
https://api.github.com/repos/letta-ai/letta-cloud/dispatches \
-d '{"event_type":"oss-update"}'

View File

@ -0,0 +1,155 @@
name: Send Message SDK Tests
on:
pull_request_target:
# branches: [main] # TODO: uncomment before merge
types: [labeled]
paths:
- 'letta/**'
jobs:
send-messages:
# Only run when the "safe to test" label is applied
if: contains(github.event.pull_request.labels.*.name, 'safe to test')
runs-on: ubuntu-latest
timeout-minutes: 15
strategy:
fail-fast: false
matrix:
config_file:
- "openai-gpt-4o-mini.json"
- "azure-gpt-4o-mini.json"
- "claude-3-5-sonnet.json"
- "claude-3-7-sonnet.json"
- "claude-3-7-sonnet-extended.json"
- "gemini-pro.json"
- "gemini-vertex.json"
services:
qdrant:
image: qdrant/qdrant
ports:
- 6333:6333
postgres:
image: pgvector/pgvector:pg17
ports:
- 5432:5432
env:
POSTGRES_HOST_AUTH_METHOD: trust
POSTGRES_DB: postgres
POSTGRES_USER: postgres
options: >-
--health-cmd pg_isready
--health-interval 10s
--health-timeout 5s
--health-retries 5
steps:
# Ensure secrets don't leak
- name: Configure git to hide secrets
run: |
git config --global core.logAllRefUpdates false
git config --global log.hideCredentials true
- name: Set up secret masking
run: |
# Automatically mask any environment variable ending with _KEY
for var in $(env | grep '_KEY=' | cut -d= -f1); do
value="${!var}"
if [[ -n "$value" ]]; then
# Mask the full value
echo "::add-mask::$value"
# Also mask partial values (first and last several characters)
# This helps when only parts of keys appear in logs
if [[ ${#value} -gt 8 ]]; then
echo "::add-mask::${value:0:8}"
echo "::add-mask::${value:(-8)}"
fi
# Also mask with common formatting changes
# Some logs might add quotes or other characters
echo "::add-mask::\"$value\""
echo "::add-mask::$value\""
echo "::add-mask::\"$value"
echo "Masked secret: $var (length: ${#value})"
fi
done
# Check out base repository code, not the PR's code (for security)
- name: Checkout base repository
uses: actions/checkout@v4 # No ref specified means it uses base branch
# Only extract relevant files from the PR (for security, specifically prevent modification of workflow files)
- name: Extract PR schema files
run: |
# Fetch PR without checking it out
git fetch origin pull/${{ github.event.pull_request.number }}/head:pr-${{ github.event.pull_request.number }}
# Extract ONLY the schema files
git checkout pr-${{ github.event.pull_request.number }} -- letta/
- name: Set up python 3.12
id: setup-python
uses: actions/setup-python@v5
with:
python-version: 3.12
- name: Load cached Poetry Binary
id: cached-poetry-binary
uses: actions/cache@v4
with:
path: ~/.local
key: venv-${{ runner.os }}-${{ steps.setup-python.outputs.python-version }}-1.8.3
- name: Install Poetry
uses: snok/install-poetry@v1
with:
version: 1.8.3
virtualenvs-create: true
virtualenvs-in-project: true
- name: Load cached venv
id: cached-poetry-dependencies
uses: actions/cache@v4
with:
path: .venv
key: venv-${{ runner.os }}-${{ steps.setup-python.outputs.python-version }}-${{ hashFiles('**/poetry.lock') }}${{ inputs.install-args || '-E dev -E postgres -E external-tools -E tests -E cloud-tool-sandbox' }}
# Restore cache with this prefix if not exact match with key
# Note cache-hit returns false in this case, so the below step will run
restore-keys: |
venv-${{ runner.os }}-${{ steps.setup-python.outputs.python-version }}-
- name: Install dependencies
if: steps.cached-poetry-dependencies.outputs.cache-hit != 'true'
shell: bash
run: poetry install --no-interaction --no-root ${{ inputs.install-args || '-E dev -E postgres -E external-tools -E tests -E cloud-tool-sandbox -E google' }}
- name: Install letta packages via Poetry
run: |
poetry run pip install --upgrade letta-client letta
- name: Migrate database
env:
LETTA_PG_PORT: 5432
LETTA_PG_USER: postgres
LETTA_PG_PASSWORD: postgres
LETTA_PG_DB: postgres
LETTA_PG_HOST: localhost
run: |
psql -h localhost -U postgres -d postgres -c 'CREATE EXTENSION vector'
poetry run alembic upgrade head
- name: Run integration tests for ${{ matrix.config_file }}
env:
LLM_CONFIG_FILE: ${{ matrix.config_file }}
LETTA_PG_PORT: 5432
LETTA_PG_USER: postgres
LETTA_PG_PASSWORD: postgres
LETTA_PG_DB: postgres
LETTA_PG_HOST: localhost
LETTA_SERVER_PASS: test_server_token
OPENAI_API_KEY: ${{ secrets.OPENAI_API_KEY }}
ANTHROPIC_API_KEY: ${{ secrets.ANTHROPIC_API_KEY }}
AZURE_API_KEY: ${{ secrets.AZURE_API_KEY }}
AZURE_BASE_URL: ${{ secrets.AZURE_BASE_URL }}
GEMINI_API_KEY: ${{ secrets.GEMINI_API_KEY }}
COMPOSIO_API_KEY: ${{ secrets.COMPOSIO_API_KEY }}
DEEPSEEK_API_KEY: ${{ secrets.DEEPSEEK_API_KEY }}
GOOGLE_CLOUD_PROJECT: ${{ secrets.GOOGLE_CLOUD_PROJECT }}
GOOGLE_CLOUD_LOCATION: ${{ secrets.GOOGLE_CLOUD_LOCATION }}
run: |
poetry run pytest \
-s -vv \
tests/integration_test_send_message.py \
--maxfail=1 --durations=10

View File

@ -28,7 +28,7 @@ First, install Poetry using [the official instructions here](https://python-poet
Once Poetry is installed, navigate to the letta directory and install the Letta project with Poetry:
```shell
cd letta
poetry shell
eval $(poetry env activate)
poetry install --all-extras
```
#### Setup PostgreSQL environment (optional)

View File

@ -66,7 +66,6 @@ ENV LETTA_ENVIRONMENT=${LETTA_ENVIRONMENT} \
POSTGRES_DB=letta \
COMPOSIO_DISABLE_VERSION_CHECK=true
WORKDIR /app
# Copy virtual environment and app from builder

View File

@ -8,26 +8,13 @@
<div align="center">
<h1>Letta (previously MemGPT)</h1>
**☄️ New release: Letta Agent Development Environment (_read more [here](#-access-the-ade-agent-development-environment)_) ☄️**
<p align="center">
<picture>
<source media="(prefers-color-scheme: dark)" srcset="https://raw.githubusercontent.com/letta-ai/letta/refs/heads/main/assets/example_ade_screenshot.png">
<source media="(prefers-color-scheme: light)" srcset="https://raw.githubusercontent.com/letta-ai/letta/refs/heads/main/assets/example_ade_screenshot_light.png">
<img alt="Letta logo" src="https://raw.githubusercontent.com/letta-ai/letta/refs/heads/main/assets/example_ade_screenshot.png" width="800">
</picture>
</p>
---
<h3>
[Homepage](https://letta.com) // [Documentation](https://docs.letta.com) // [ADE](https://docs.letta.com/agent-development-environment) // [Letta Cloud](https://forms.letta.com/early-access)
</h3>
**👾 Letta** is an open source framework for building stateful LLM applications. You can use Letta to build **stateful agents** with advanced reasoning capabilities and transparent long-term memory. The Letta framework is white box and model-agnostic.
**👾 Letta** is an open source framework for building **stateful agents** with advanced reasoning capabilities and transparent long-term memory. The Letta framework is white box and model-agnostic.
[![Discord](https://img.shields.io/discord/1161736243340640419?label=Discord&logo=discord&logoColor=5865F2&style=flat-square&color=5865F2)](https://discord.gg/letta)
[![Twitter Follow](https://img.shields.io/badge/Follow-%40Letta__AI-1DA1F2?style=flat-square&logo=x&logoColor=white)](https://twitter.com/Letta_AI)
@ -157,7 +144,7 @@ No, the data in your Letta server database stays on your machine. The Letta ADE
> _"Do I have to use your ADE? Can I build my own?"_
The ADE is built on top of the (fully open source) Letta server and Letta Agents API. You can build your own application like the ADE on top of the REST API (view the documention [here](https://docs.letta.com/api-reference)).
The ADE is built on top of the (fully open source) Letta server and Letta Agents API. You can build your own application like the ADE on top of the REST API (view the documentation [here](https://docs.letta.com/api-reference)).
> _"Can I interact with Letta agents via the CLI?"_

View File

@ -28,7 +28,6 @@ services:
- "8083:8083"
- "8283:8283"
environment:
- SERPAPI_API_KEY=${SERPAPI_API_KEY}
- LETTA_PG_DB=${LETTA_PG_DB:-letta}
- LETTA_PG_USER=${LETTA_PG_USER:-letta}
- LETTA_PG_PASSWORD=${LETTA_PG_PASSWORD:-letta}

View File

@ -8,6 +8,7 @@ If you're using Letta Cloud, replace 'baseURL' with 'token'
See: https://docs.letta.com/api-reference/overview
Execute this script using `poetry run python3 example.py`
This will install `letta_client` and other dependencies.
"""
client = Letta(
base_url="http://localhost:8283",

View File

@ -2,22 +2,33 @@ from pprint import pprint
from letta_client import Letta
# Connect to Letta server
client = Letta(base_url="http://localhost:8283")
# Use the "everything" mcp server:
# https://github.com/modelcontextprotocol/servers/tree/main/src/everything
mcp_server_name = "everything"
mcp_tool_name = "echo"
# List all McpTool belonging to the "everything" mcp server.
mcp_tools = client.tools.list_mcp_tools_by_server(
mcp_server_name=mcp_server_name,
)
# We can see that "echo" is one of the tools, but it's not
# a letta tool that can be added to a client (it has no tool id).
for tool in mcp_tools:
pprint(tool)
# Create a Tool (with a tool id) using the server and tool names.
mcp_tool = client.tools.add_mcp_tool(
mcp_server_name=mcp_server_name,
mcp_tool_name=mcp_tool_name
)
# Create an agent with the tool, using tool.id -- note that
# this is the ONLY tool in the agent, you typically want to
# also include the default tools.
agent = client.agents.create(
memory_blocks=[
{
@ -31,6 +42,7 @@ agent = client.agents.create(
)
print(f"Created agent id {agent.id}")
# Ask the agent to call the tool.
response = client.agents.messages.create(
agent_id=agent.id,
messages=[

View File

@ -253,15 +253,18 @@
},
{
"cell_type": "code",
"execution_count": 11,
"execution_count": null,
"id": "7808912f-831b-4cdc-8606-40052eb809b4",
"metadata": {},
"outputs": [],
"source": [
"from typing import Optional, List\n",
"from typing import Optional, List, TYPE_CHECKING\n",
"import json\n",
"\n",
"def task_queue_push(self: \"Agent\", task_description: str):\n",
"if TYPE_CHECKING:\n",
" from letta import AgentState\n",
"\n",
"def task_queue_push(agent_state: \"AgentState\", task_description: str):\n",
" \"\"\"\n",
" Push to a task queue stored in core memory. \n",
"\n",
@ -273,12 +276,12 @@
" does not produce a response.\n",
" \"\"\"\n",
" import json\n",
" tasks = json.loads(self.memory.get_block(\"tasks\").value)\n",
" tasks = json.loads(agent_state.memory.get_block(\"tasks\").value)\n",
" tasks.append(task_description)\n",
" self.memory.update_block_value(\"tasks\", json.dumps(tasks))\n",
" agent_state.memory.update_block_value(\"tasks\", json.dumps(tasks))\n",
" return None\n",
"\n",
"def task_queue_pop(self: \"Agent\"):\n",
"def task_queue_pop(agent_state: \"AgentState\"):\n",
" \"\"\"\n",
" Get the next task from the task queue \n",
"\n",
@ -288,12 +291,12 @@
" None (the task queue is empty)\n",
" \"\"\"\n",
" import json\n",
" tasks = json.loads(self.memory.get_block(\"tasks\").value)\n",
" tasks = json.loads(agent_state.memory.get_block(\"tasks\").value)\n",
" if len(tasks) == 0: \n",
" return None\n",
" task = tasks[0]\n",
" print(\"CURRENT TASKS: \", tasks)\n",
" self.memory.update_block_value(\"tasks\", json.dumps(tasks[1:]))\n",
" agent_state.memory.update_block_value(\"tasks\", json.dumps(tasks[1:]))\n",
" return task\n",
"\n",
"push_task_tool = client.tools.upsert_from_function(func=task_queue_push)\n",
@ -310,7 +313,7 @@
},
{
"cell_type": "code",
"execution_count": 12,
"execution_count": null,
"id": "135fcf3e-59c4-4da3-b86b-dbffb21aa343",
"metadata": {},
"outputs": [],
@ -336,10 +339,12 @@
" ),\n",
" CreateBlock(\n",
" label=\"tasks\",\n",
" value=\"\",\n",
" value=\"[]\",\n",
" ),\n",
" ],\n",
" tool_ids=[push_task_tool.id, pop_task_tool.id],\n",
" model=\"letta/letta-free\",\n",
" embedding=\"letta/letta-free\",\n",
")"
]
},

View File

@ -1,9 +1,9 @@
__version__ = "0.7.14"
__version__ = "0.7.16"
# import clients
from letta.client.client import LocalClient, RESTClient, create_client
# # imports for easier access
# imports for easier access
from letta.schemas.agent import AgentState
from letta.schemas.block import Block
from letta.schemas.embedding_config import EmbeddingConfig

View File

@ -483,7 +483,7 @@ class Agent(BaseAgent):
response_message.function_call if response_message.function_call is not None else response_message.tool_calls[0].function
)
function_name = function_call.name
self.logger.info(f"Request to call function {function_name} with tool_call_id: {tool_call_id}")
self.logger.debug(f"Request to call function {function_name} with tool_call_id: {tool_call_id}")
# Failure case 1: function name is wrong (not in agent_state.tools)
target_letta_tool = None

View File

@ -235,7 +235,9 @@ def embedding_model(config: EmbeddingConfig, user_id: Optional[uuid.UUID] = None
if endpoint_type == "openai":
return OpenAIEmbeddings(
api_key=model_settings.openai_api_key, model=config.embedding_model, base_url=model_settings.openai_api_base
api_key=model_settings.openai_api_key,
model=config.embedding_model,
base_url=model_settings.openai_api_base,
)
elif endpoint_type == "azure":

View File

@ -34,6 +34,19 @@ def resolve_type(annotation: str):
return BUILTIN_TYPES[annotation]
try:
if annotation.startswith("list["):
inner_type = annotation[len("list[") : -1]
resolve_type(inner_type)
return list
elif annotation.startswith("dict["):
inner_types = annotation[len("dict[") : -1]
key_type, value_type = inner_types.split(",")
return dict
elif annotation.startswith("tuple["):
inner_types = annotation[len("tuple[") : -1]
[resolve_type(t.strip()) for t in inner_types.split(",")]
return tuple
parsed = ast.literal_eval(annotation)
if isinstance(parsed, type):
return parsed

View File

@ -46,7 +46,7 @@ def conversation_search(self: "Agent", query: str, page: Optional[int] = 0) -> O
count = RETRIEVAL_QUERY_DEFAULT_PAGE_SIZE
# TODO: add paging by page number. currently cursor only works with strings.
# original: start=page * count
messages = self.message_manager.list_user_messages_for_agent(
messages = self.message_manager.list_messages_for_agent(
agent_id=self.agent_state.id,
actor=self.user,
query_text=query,

View File

@ -3,14 +3,19 @@ from typing import Any, Dict, List
from anthropic import AnthropicBedrock
from letta.log import get_logger
from letta.settings import model_settings
logger = get_logger(__name__)
def has_valid_aws_credentials() -> bool:
"""
Check if AWS credentials are properly configured.
"""
valid_aws_credentials = os.getenv("AWS_ACCESS_KEY") and os.getenv("AWS_SECRET_ACCESS_KEY") and os.getenv("AWS_REGION")
valid_aws_credentials = (
os.getenv("AWS_ACCESS_KEY") is not None and os.getenv("AWS_SECRET_ACCESS_KEY") is not None and os.getenv("AWS_REGION") is not None
)
return valid_aws_credentials
@ -20,6 +25,7 @@ def get_bedrock_client():
"""
import boto3
logger.debug(f"Getting Bedrock client for {model_settings.aws_region}")
sts_client = boto3.client(
"sts",
aws_access_key_id=model_settings.aws_access_key,
@ -51,12 +57,13 @@ def bedrock_get_model_list(region_name: str) -> List[dict]:
"""
import boto3
logger.debug(f"Getting model list for {region_name}")
try:
bedrock = boto3.client("bedrock", region_name=region_name)
response = bedrock.list_inference_profiles()
return response["inferenceProfileSummaries"]
except Exception as e:
print(f"Error getting model list: {str(e)}")
logger.exception(f"Error getting model list: {str(e)}", e)
raise e
@ -67,6 +74,7 @@ def bedrock_get_model_details(region_name: str, model_id: str) -> Dict[str, Any]
import boto3
from botocore.exceptions import ClientError
logger.debug(f"Getting model details for {model_id}")
try:
bedrock = boto3.client("bedrock", region_name=region_name)
response = bedrock.get_foundation_model(modelIdentifier=model_id)

View File

@ -55,7 +55,6 @@ def openai_check_valid_api_key(base_url: str, api_key: Union[str, None]) -> None
else:
raise ValueError("No API key provided")
def openai_get_model_list(url: str, api_key: Optional[str] = None, fix_url: bool = False, extra_params: Optional[dict] = None) -> dict:
"""https://platform.openai.com/docs/api-reference/models/list"""
from letta.utils import printd

View File

@ -75,7 +75,8 @@ class LLMConfig(BaseModel):
description="The reasoning effort to use when generating text reasoning models",
)
max_reasoning_tokens: int = Field(
0, description="Configurable thinking budget for extended thinking, only used if enable_reasoner is True. Minimum value is 1024."
0,
description="Configurable thinking budget for extended thinking. Used for enable_reasoner and also for Google Vertex models like Gemini 2.5 Flash. Minimum value is 1024 when used with enable_reasoner.",
)
# FIXME hack to silence pydantic protected namespace warning

View File

@ -30,9 +30,7 @@ logger = get_logger(__name__)
responses={
200: {
"description": "Successful response",
"content": {
"text/event-stream": {"description": "Server-Sent Events stream"},
},
"content": {"text/event-stream": {}},
}
},
)

View File

@ -669,9 +669,7 @@ async def send_message(
responses={
200: {
"description": "Successful response",
"content": {
"text/event-stream": {"description": "Server-Sent Events stream"},
},
"content": {"text/event-stream": {}},
}
},
)
@ -696,7 +694,7 @@ async def send_message_streaming(
feature_enabled = settings.use_experimental or experimental_header.lower() == "true"
model_compatible = agent.llm_config.model_endpoint_type in ["anthropic", "openai"]
if agent_eligible and feature_enabled and model_compatible:
if agent_eligible and feature_enabled and model_compatible and request.stream_tokens:
experimental_agent = LettaAgent(
agent_id=agent_id,
message_manager=server.message_manager,

View File

@ -78,6 +78,17 @@ def list_sources(
return server.list_all_sources(actor=actor)
@router.get("/count", response_model=int, operation_id="count_sources")
def count_sources(
server: "SyncServer" = Depends(get_letta_server),
actor_id: Optional[str] = Header(None, alias="user_id"), # Extract user_id from header, default to None if not present
):
"""
Count all data sources created by a user.
"""
return server.source_manager.size(actor=server.user_manager.get_user_or_default(user_id=actor_id))
@router.post("/", response_model=Source, operation_id="create_source")
def create_source(
source_create: SourceCreate,

View File

@ -98,6 +98,21 @@ async def list_tools(
raise HTTPException(status_code=500, detail=str(e))
@router.get("/count", response_model=int, operation_id="count_tools")
def count_tools(
server: SyncServer = Depends(get_letta_server),
actor_id: Optional[str] = Header(None, alias="user_id"),
):
"""
Get a count of all tools available to agents belonging to the org of the user
"""
try:
return server.tool_manager.size(actor=server.user_manager.get_user_or_default(user_id=actor_id))
except Exception as e:
print(f"Error occurred: {e}")
raise HTTPException(status_code=500, detail=str(e))
@router.post("/", response_model=Tool, operation_id="create_tool")
def create_tool(
request: ToolCreate = Body(...),

View File

@ -26,9 +26,7 @@ logger = get_logger(__name__)
responses={
200: {
"description": "Successful response",
"content": {
"text/event-stream": {"description": "Server-Sent Events stream"},
},
"content": {"text/event-stream": {}},
}
},
)

View File

@ -1191,8 +1191,13 @@ class AgentManager:
@enforce_types
async def get_in_context_messages_async(self, agent_id: str, actor: PydanticUser) -> List[PydanticMessage]:
<<<<<<< HEAD
agent = await self.get_agent_by_id_async(agent_id=agent_id, actor=actor)
return await self.message_manager.get_messages_by_ids_async(message_ids=agent.message_ids, actor=actor)
=======
message_ids = self.get_agent_by_id(agent_id=agent_id, actor=actor).message_ids
return await self.message_manager.get_messages_by_ids_async(message_ids=message_ids, actor=actor)
>>>>>>> main
@enforce_types
def get_system_message(self, agent_id: str, actor: PydanticUser) -> PydanticMessage:

View File

@ -373,17 +373,24 @@ class MessageManager:
if group_id:
query = query.filter(MessageModel.group_id == group_id)
# If query_text is provided, filter messages using subquery + json_array_elements.
# If query_text is provided, filter messages by matching any "text" type content block
# whose text includes the query string (case-insensitive).
if query_text:
content_element = func.json_array_elements(MessageModel.content).alias("content_element")
query = query.filter(
exists(
select(1)
.select_from(content_element)
.where(text("content_element->>'type' = 'text' AND content_element->>'text' ILIKE :query_text"))
.params(query_text=f"%{query_text}%")
dialect_name = session.bind.dialect.name
if dialect_name == "postgresql": # using subquery + json_array_elements.
content_element = func.json_array_elements(MessageModel.content).alias("content_element")
subquery_sql = text("content_element->>'type' = 'text' AND content_element->>'text' ILIKE :query_text")
subquery = select(1).select_from(content_element).where(subquery_sql)
elif dialect_name == "sqlite": # using `json_each` and JSON path expressions
json_item = func.json_each(MessageModel.content).alias("json_item")
subquery_sql = text(
"json_extract(value, '$.type') = 'text' AND lower(json_extract(value, '$.text')) LIKE lower(:query_text)"
)
)
subquery = select(1).select_from(json_item).where(subquery_sql)
query = query.filter(exists(subquery.params(query_text=f"%{query_text}%")))
# If role(s) are provided, filter messages by those roles.
if roles:

View File

@ -1,6 +1,6 @@
[tool.poetry]
name = "letta"
version = "0.7.14"
version = "0.7.16"
packages = [
{include = "letta"},
]
@ -106,6 +106,7 @@ google = ["google-genai"]
desktop = ["pgvector", "pg8000", "psycopg2-binary", "psycopg2", "pyright", "websockets", "fastapi", "uvicorn", "docker", "langchain", "wikipedia", "langchain-community", "locust"]
all = ["pgvector", "pg8000", "psycopg2-binary", "psycopg2", "pytest", "pytest-asyncio", "pexpect", "black", "pre-commit", "pyright", "pytest-order", "autoflake", "isort", "websockets", "fastapi", "uvicorn", "docker", "langchain", "wikipedia", "langchain-community", "locust"]
[tool.poetry.group.dev.dependencies]
black = "^24.4.2"
ipykernel = "^6.29.5"

View File

@ -0,0 +1,32 @@
version: '3.7'
services:
redis:
image: redis:alpine
container_name: redis
healthcheck:
test: ['CMD-SHELL', 'redis-cli ping | grep PONG']
interval: 1s
timeout: 3s
retries: 5
ports:
- '6379:6379'
volumes:
- ./data/redis:/data
command: redis-server --appendonly yes
postgres:
image: ankane/pgvector
container_name: postgres
healthcheck:
test: ['CMD-SHELL', 'pg_isready -U postgres']
interval: 1s
timeout: 3s
retries: 5
ports:
- '5432:5432'
environment:
POSTGRES_USER: postgres
POSTGRES_PASSWORD: postgres
POSTGRES_DB: letta
volumes:
- ./data/postgres:/var/lib/postgresql/data
- ./scripts/postgres-db-init/init.sql:/docker-entrypoint-initdb.d/init.sql

View File

@ -155,6 +155,7 @@ async def test_sleeptime_group_chat(server, actor):
# 6. Verify run status after sleep
time.sleep(2)
for run_id in run_ids:
job = server.job_manager.get_job_by_id(job_id=run_id, actor=actor)
assert job.status == JobStatus.running or job.status == JobStatus.completed

View File

@ -564,7 +564,6 @@ def _modify(group_id, server, actor, max_val, min_val):
actor=actor,
)
def test_valid_buffer_lengths_above_four(group_id, server, actor):
# both > 4 and max > min
updated = _modify(group_id, server, actor, max_val=10, min_val=5)

View File

@ -127,13 +127,14 @@ def test_archival(agent_obj):
pass
def test_recall(client, agent_obj):
def test_recall_self(client, agent_obj):
# keyword
keyword = "banana"
keyword_backwards = "".join(reversed(keyword))
# Send messages to agent
client.send_message(agent_id=agent_obj.agent_state.id, role="user", message="hello")
client.send_message(agent_id=agent_obj.agent_state.id, role="user", message=keyword)
client.send_message(agent_id=agent_obj.agent_state.id, role="user", message="what word is '{}' backwards?".format(keyword_backwards))
client.send_message(agent_id=agent_obj.agent_state.id, role="user", message="tell me a fun fact")
# Conversation search

View File

@ -1612,6 +1612,46 @@ def test_modify_letta_message(server: SyncServer, sarah_agent, default_user):
# TODO: tool calls/responses
def test_list_messages_with_query_text_filter(server: SyncServer, sarah_agent, default_user):
"""
Ensure that list_messages_for_agent correctly filters messages by query_text.
"""
test_contents = [
"This is a message about unicorns and rainbows.",
"Another message discussing dragons in the sky.",
"Plain message with no magical beasts.",
"Mentioning unicorns again for good measure.",
"Something unrelated entirely.",
]
created_messages = []
for content in test_contents:
message = PydanticMessage(
agent_id=sarah_agent.id,
role=MessageRole.user,
content=[{"type": "text", "text": content}],
)
created = server.message_manager.create_message(pydantic_msg=message, actor=default_user)
created_messages.append(created)
# Query messages that include "unicorns"
unicorn_messages = server.message_manager.list_messages_for_agent(agent_id=sarah_agent.id, actor=default_user, query_text="unicorns")
assert len(unicorn_messages) == 2
for msg in unicorn_messages:
assert any(chunk.type == "text" and "unicorns" in chunk.text.lower() for chunk in msg.content or [])
# Query messages that include "dragons"
dragon_messages = server.message_manager.list_messages_for_agent(agent_id=sarah_agent.id, actor=default_user, query_text="dragons")
assert len(dragon_messages) == 1
assert any(chunk.type == "text" and "dragons" in chunk.text.lower() for chunk in dragon_messages[0].content or [])
# Query with a word that shouldn't match any message
no_match_messages = server.message_manager.list_messages_for_agent(
agent_id=sarah_agent.id, actor=default_user, query_text="nonexistentcreature"
)
assert len(no_match_messages) == 0
# ======================================================================================================================
# AgentManager Tests - Blocks Relationship
# ======================================================================================================================

View File

@ -115,7 +115,7 @@ def test_shared_blocks(client: LettaSDKClient):
)
assert (
"charles" in client.agents.blocks.retrieve(agent_id=agent_state2.id, block_label="human").value.lower()
), f"Shared block update failed {client.agents.blocks.retrieve(agent_id=agent_state2.id, block_label="human").value}"
), f"Shared block update failed {client.agents.blocks.retrieve(agent_id=agent_state2.id, block_label='human').value}"
# cleanup
client.agents.delete(agent_state1.id)

View File

@ -8,10 +8,9 @@ def adjust_menu_prices(percentage: float) -> str:
str: A formatted string summarizing the price adjustments.
"""
import cowsay
from tqdm import tqdm
from core.menu import Menu, MenuItem # Import a class from the codebase
from core.utils import format_currency # Use a utility function to test imports
from tqdm import tqdm
if not isinstance(percentage, (int, float)):
raise TypeError("percentage must be a number")